Examination of tumor molecular characteristics by liquid biopsy is likely to greatly influence personalized cancer patient management. Analysis of circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), and tumor-derived exosomes, all collectively referred to as “liquid biopsies,” are not only a modality to monitor treatment efficacy, disease progression, and emerging therapy resistance mechanisms, but they also assess tumor heterogeneity and evolution in real time. We review the literature concerning the examination of ctDNA and CTC in a diagnostic setting, evaluating their prognostic, predictive, and monitoring capabilities. We discuss the advantages and limitations of various leading ctDNA/CTC analysis technologies. Finally, guided by the results of clinical trials, we discuss the readiness of cell-free DNA and CTC as routine biomarkers in the context of various common types of neoplastic disease. At this moment, one cannot conclude whether or not liquid biopsy will become a mainstay in oncology practice.
Background DNA methylation‐based classification of cancer provides a comprehensive molecular approach to diagnose tumours. In fact, DNA methylation profiling of human brain tumours already profoundly impacts clinical neuro‐oncology. However, current implementation using hybridisation microarrays is time consuming and costly. We recently reported on shallow nanopore whole‐genome sequencing for rapid and cost‐effective generation of genome‐wide 5‐methylcytosine profiles as input to supervised classification. Here, we demonstrate that this approach allows us to discriminate a wide spectrum of primary brain tumours. Results Using public reference data of 82 distinct tumour entities, we performed nanopore genome sequencing on 382 tissue samples covering 46 brain tumour (sub)types. Using bootstrap sampling in a cohort of 55 cases, we found that a minimum set of 1000 random CpG features is sufficient for high‐confidence classification by ad hoc random forests. We implemented score recalibration as a confidence measure for interpretation in a clinical context and empirically determined a platform‐specific threshold in a randomly sampled discovery cohort (N = 185). Applying this cut‐off to an independent validation series (n = 184) yielded 148 classifiable cases (sensitivity 80.4%) and demonstrated 100% specificity. Cross‐lab validation demonstrated robustness with concordant results across four laboratories in 10/11 (90.9%) cases. In a prospective benchmarking (N = 15), the median time to results was 21.1 h. Conclusions In conclusion, nanopore sequencing allows robust and rapid methylation‐based classification across the full spectrum of brain tumours. Platform‐specific confidence scores facilitate clinical implementation for which prospective evaluation is warranted and ongoing.
A new polyene macrolide family, closely related to the pentaene macrolide antibiotic roflamycoin, was isolated from the both fermentation broth and biomass of Streptomyces durmitorensis wild-type strain MS405. The main compound was identified by NMR and Fourier transform ion cyclotron resonance mass spectrometry as 32,33-didehydroroflamycoin (1; DDHR). Additional four structurally related compounds were determined solely by MS analysis. DDHR induces cell death by apoptosis in various cancer cell lines as demonstrated by DNA fragmentation. Striking feature of DDHR is its internal fluorescence allowing visualization of labeled plasma membranes and internal membrane structures.
The majority of metabolic principles are evolutionarily conserved from nematodes to humans. Caenorhabditis elegans has widely accelerated the discovery of new genes important to maintain organismic metabolic homeostasis. Various methods exist to assess the metabolic state in worms, yet they often require large animal numbers and tend to be performed as bulk analyses of whole worm homogenates, thereby largely precluding a detailed studies of metabolic changes in specific worm tissues. Here, we have adapted well-established histochemical methods for the use on C. elegans fresh frozen sections and demonstrate their validity for analyses of morphological and metabolic changes on tissue level in wild type and various mutant strains. We show how the worm presents on hematoxylin and eosin (H&E) stained sections and demonstrate their usefulness in monitoring and the identification of morphological abnormalities. In addition, we demonstrate how Oil-Red-O staining on frozen worm cross-sections permits quantification of lipid storage, avoiding the artifact-prone fixation and permeabilization procedures of traditional whole-mount protocols. We also adjusted standard enzymatic stains for respiratory chain subunits (NADH, SDH, and COX) to monitor metabolic states of various C. elegans tissues. In summary, the protocols presented here provide technical guidance to obtain robust, reproducible and quantifiable tissue-specific data on worm morphology as well as carbohydrate, lipid and mitochondrial energy metabolism that cannot be obtained through traditional biochemical bulk analyses of worm homogenates. Furthermore, analysis of worm cross-sections overcomes the common problem with quantification in three-dimensional whole-mount specimens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.