Earlier studies suggested that traditional apple varieties have quality traits well accepted by consumers and beneficial effects on human health. The aim was to collect 25 traditional apple varieties grown in Croatia and to determine, for the first time in so many details, their external (weight, height, width, shape, color), internal quality traits (firmness, starch decomposition index, maturity index, soluble solid concentration, total acids, soluble solid/total acids ratio, pH), and seed characteristics. In addition, individual polyphenols were determined in the flesh and peel, by using RP-HPLC. All was compared to the commercial variety ‘Idared’. Quality parameters of these varieties were similar to those of the commercial variety. The flesh and peel contained flavan-3-ols, dihydrochalcones, phenolic acids, and flavonols, while anthocyanins were additionally found in the peel. Total polyphenols in the peel (536–3801 mg kg−1 fresh weight (FW)) and in the flesh (79–1294 mg kg−1 FW) of the majority of varieties were higher than in the commercial variety. Principal component analysis showed possible clustering according to polyphenol amounts. According to the observed diversity of quality traits and bioactive polyphenol contents, the traditional varieties have potential for consumer acceptance and increased cultivation.
Polyphenols have received great attention as important phytochemicals beneficial for human health. They have a protective effect against cardiovascular disease, obesity, cancer and diabetes. The utilization of polyphenols as natural antioxidants, functional ingredients and supplements is limited due to their low stability caused by environmental and processing conditions, such as heat, light, oxygen, pH, enzymes and so forth. These disadvantages are overcome by the encapsulation of polyphenols by different methods in the presence of polyphenolic carriers. Different encapsulation technologies have been established with the purpose of decreasing polyphenol sensitivity and the creation of more efficient delivery systems. Among them, spray-drying and freeze-drying are the most common methods for polyphenol encapsulation. This review will provide an overview of scientific studies in which polyphenols from different sources were encapsulated using these two drying methods, as well as the impact of different polysaccharides used as carriers for encapsulation.
Polyphenols are secondary plant metabolites synthesized during the development of the grape berry as a response to stress conditions. They are important constituents in red wines that contribute to the sensory properties and antioxidant activity of wines. Due to the development of highly sophisticated analytical devices, it is now possible to characterize the structure of highly polymerized polyphenols and obtain a full polyphenol profile of red wines. Red wine polyphenols include the ones present in grapes as well as new polyphenol products formed during the winemaking process. Among them, the most important groups and their representatives are flavanols (catechin), stilbenes (trans-resveratrol), flavonols (quercetin) and hydroxybenzoic acids (gallic acid). It is known that polyphenols exhibit beneficial effects on human health, such as anti-inflammatory, anticarcinogenic and cardio-protective effects. Many studies have been conducted on the health effects of red wine polyphenols in cancer chemopreventive activities, neuroprotective effects and impact on cardiovascular diseases, gut microbiota in humans, etc. This review will provide major scientific findings on the impact of red wine polyphenols on human health as well as a review of polyphenols present in red wines and their main features.
Plant-based protein matrices can be used for the formulation of delivery systems of cinnamic acid. Pumpkin, pea and almond protein matrices were used for the formulation of dried complexes. The matrices were used in varying amounts (1%, 2%, 5% and 10%) whilst the amount of cinnamic acid was maintained constant. The obtained complexes were analyzed by HPLC, DSC and FTIR-ATR. The highest amounts of cinnamic acid were determined on complexes prepared by the lowest amounts of protein matrices, regardless of their type. The highest affinity for cinnamic acid adsorption was determined for the pumpkin protein matrix. DSC analysis revealed that adsorption of cinnamic acid caused an increase in the thermal stability of the almond protein matrix, while the other two matrices had the opposite behavior. The complexation of protein matrices and cinnamic acid was proven by recording the IR spectra. The obtained complexes could have potential applications in food products to achieve enrichment with cinnamic acid as well as proteins.
Encapsulation of bioactives is a tool to prepare their suitable delivery systems and ensure their stability. For this purpose, cellulose was selected as carrier of raspberry juice phenolics and freeze-dried cellulose/raspberry encapsulates (C/R_Es) were formulated. Influence of cellulose amount (2.5%, 5%, 7.5% and 10%) and time (15 or 60 min) on the complexation of cellulose and raspberry juice was investigated. Obtained C/R_Es were evaluated for total phenolics, anthocyanins, antioxidant activity, inhibition of α-amylase and color. Additionally, encapsulation was confirmed by FTIR. Stability of C/R_Es was examined after 12 months of storage at room temperature. Increasing the amount of cellulose during formulation of C/R_E from 2.5% to 10%, resulted in the decrease of content of total phenolics and anthocyanins. Additionally, encapsulates formulated by 15 min of complexation had a higher amount of investigated compounds. This tendency was retained after storage. The highest antioxidant activities were determined for C/R_E with 2.5% of cellulose and the lowest for those with 10% of cellulose, regardless of the methods used for its evaluation. After storage of 12 months, antioxidant activity slightly increased. Encapsulates with 2.5% of cellulose had the highest and those with 10% of cellulose the lowest capability for inhibition of α-amylase. The amount of cellulose also had an impact on color of C/R_Es. Results of this study suggest that cellulose could be a good encapsulation polymer for delivering raspberry bioactives, especially when cellulose was used in lower percentages for formulation of encapsulates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.