Nanotechnology promises a revolution in pharmacology to improve or create ex novo therapies. Cerium oxide nanoparticles (nanoceria), well-known as catalysts, possess an astonishing pharmacological potential due to their antioxidant properties, deriving from a fraction of Ce(3+) ions present in CeO(2). These defects, compensated by oxygen vacancies, are enriched at the surface and therefore in nanosized particles. Reactions involving redox cycles between the Ce(3+) and Ce(4+) oxidation states allow nanoceria to react catalytically with superoxide and hydrogen peroxide, mimicking the behavior of two key antioxidant enzymes, superoxide dismutase and catalase, potentially abating all noxious intracellular reactive oxygen species (ROS) via a self-regenerating mechanism. Hence nanoceria, apparently well tolerated by the organism, might fight chronic inflammation and the pathologies associated with oxidative stress, which include cancer and neurodegeneration. Here we review the biological effects of nanoceria as they emerge from in vitro and in vivo studies, considering biocompatibility and the peculiar antioxidant mechanisms.
p53 functions as a transcription factor involved in cell-cycle control, DNA repair, apoptosis and cellular stress responses. However, besides inducing cell growth arrest and apoptosis, p53 activation also modulates cellular senescence and organismal aging. Senescence is an irreversible cell-cycle arrest that has a crucial role both in aging and as a robust physiological antitumor response, which counteracts oncogenic insults. Therefore, via the regulation of senescence, p53 contributes to tumor growth suppression, in a manner strictly dependent by its expression and cellular context. In this review, we focus on the recent advances on the contribution of p53 to cellular senescence and its implication for cancer therapy, and we will discuss p53's impact on animal lifespan. Moreover, we describe p53-mediated regulation of several physiological pathways that could mediate its role in both senescence and aging.
SummaryClass I histone deacetylases (HDAC1, HDAC2, and HDAC3) are recruited by cognate corepressor proteins into specific transcriptional repression complexes that target HDAC activity to chromatin resulting in chromatin condensation and transcriptional silencing. We previously reported the structure of HDAC3 in complex with the SMRT corepressor. This structure revealed the presence of inositol-tetraphosphate [Ins(1,4,5,6)P4] at the interface of the two proteins. It was previously unclear whether the role of Ins(1,4,5,6)P4 is to act as a structural cofactor or a regulator of HDAC3 activity. Here we report the structure of HDAC1 in complex with MTA1 from the NuRD complex. The ELM2-SANT domains from MTA1 wrap completely around HDAC1 occupying both sides of the active site such that the adjacent BAH domain is ideally positioned to recruit nucleosomes to the active site of the enzyme. Functional assays of both the HDAC1 and HDAC3 complexes reveal that Ins(1,4,5,6)P4 is a bona fide conserved regulator of class I HDAC complexes.
Antioxidant therapy is the novel frontier to prevent and treat an impressive series of severe human diseases, and the search for adequate antioxidant drugs is fervent. Cerium oxide nanoparticles (nanoceria) are redox-active owing to the coexistence of Ce(3+) and Ce(4+) oxidation states and to the fact that Ce(3+) defects, and the compensating oxygen vacancies, are more abundant at the surface. Nanoceria particles exert outstanding antioxidant effects in vivo acting as well-tolerated anti-age and anti-inflammatory agents, potentially being innovative therapeutic tools. However, the biological antioxidant mechanisms are still unclear. Here, the analysis on two leukocyte cell lines undergoing apoptosis via redox-dependent or independent mechanisms revealed that the intracellular antioxidant effect is the direct cause of the anti-apoptotic and prosurvival effects of nanoceria. Doping with increasing concentrations of Sm(3+), which progressively decreased Ce(3+) without affecting oxygen vacancies, blunted these effects, demonstrating that Ce(3+)/Ce(4+) redox reactions are responsible for the outstanding biological properties of nanoceria.
Mutations in PINK1 and PARKIN cause early-onset Parkinson's disease (PD), thought to be due to mitochondrial toxicity. Here, we show that in Drosophila pink1 and parkin mutants, defective mitochondria also give rise to endoplasmic reticulum (ER) stress signalling, specifically to the activation of the protein kinase R-like endoplasmic reticulum kinase (PERK) branch of the unfolded protein response (UPR). We show that enhanced ER stress signalling in pink1 and parkin mutants is mediated by mitofusin bridges, which occur between defective mitochondria and the ER. Reducing mitofusin contacts with the ER is neuroprotective, through suppression of PERK signalling, while mitochondrial dysfunction remains unchanged. Further, both genetic inhibition of dPerk-dependent ER stress signalling and pharmacological inhibition using the PERK inhibitor GSK2606414 were neuroprotective in both pink1 and parkin mutants. We conclude that activation of ER stress by defective mitochondria is neurotoxic in pink1 and parkin flies and that the reduction of this signalling is neuroprotective, independently of defective mitochondria. A video abstract for this article is available online in the supplementary information
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.