Potentiometric analysis of fluoride content (as F- ion) in solutions by using fluoride ion-selective electrode is simple, reliable and cheap. Very small concentrations of fluoride-ions (to 10-6 mol/dm3) can be determined by fluoride selective electrode, with regulation of ion strength of a solution and control of concentration of hydroxide ions and interfering ions of metals. The influence of pH and complexing ions of metals can be successfully regulated by the TISAB solution and by preserving pH value in the range from 5.00 to 7.00. The content of fluorides in the samples can be determined by the method of direct potentiometer, and in the case of very low concentration by standard addition method. In this paper it was analyzed the determination of fluoride ions concentration in bottled mineral waters and water from Belgrade plumbing in two Belgrade districts (Palilula and Novi Beograd) and in tea, by using the fluoride selective electrode. It was determined that the content of fluoride ions in bottled mineral water significantly differs from values given on declaration, and that content of fluoride ions varies over a period of time. The content of fluoride ions in water from plumbing in two Belgrade districts at the time of analysis was significantly increased and exceeded values given in Regulation for drinking water quality. The received results from the analysis of fluorides in teas show that fluorides exist in teas in different concentrations. There are also differences between the same kinds of tea, which is noted with mint (Mentha piperitae folium), as a consequence of differences between soils where it was planted. As taking of fluorides, according to World Health Organisation recommendation (WHO), is limited in the range from 2 to 4 mg per day, it is necessary to give the content of fluorides on all products that are used in human consumption
The amount of titration acid in must is in the largest number of cases with in the range 5.0-8.0 g/dm3. Wines, as a rule, contain less acids than must, and according to Regulations, titratable acidity is in the range of 4.0-8.0 g/dm3 expressed in tartaric acid, because a part of tartaric acid is deposited in the form of salts (tartar or argol) during alcohol fermentation. For wines that contain less than 4 g/dm3 of titratable acids there arises a suspicion about their origin, that is, that during the preparation some illegal acts were done. Because of that, the aim of this paper is to determine titratable acidity in white wine, using standard methods of determination, which are compared with the results received by potentiometric titration using ion-selective electrode. According to the received results it can be seen that wine titration with indicator gives sufficient reliable values of wine titration acidity. However, as potentiometric titration at pH value 7.00 is more reliable and objective method, the values of titratable acids content in wine, expressed through tartaric acid, are given according to this result. The analysis of differential potentiometric curves shows that these curves can give us an answer to the question of the presence of a larger amount of other nonorganic substances, which have already existed in wine. However, none of the used methods gives absolutely reliable answer what substances are present in analysed samples
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.