Because low levels of DNA double strand breaks (DSBs) appear not to activate the ATM-mediated prophase I checkpoint in full-grown oocytes, there may exist mechanisms to protect chromosome integrity during meiotic maturation. Using live imaging we demonstrate that low levels of DSBs induced by the radiomimetic drug Neocarzinostatin (NCS) increase the incidence of chromosome fragments and lagging chromosomes but do not lead to APC/C activation and anaphase onset delay. The number of DSBs, represented by gH2AX foci, significantly decreases between prophase I and metaphase II in both control and NCS-treated oocytes. Transient treatment with NCS increases >2-fold the number of DSBs in prophase I oocytes, but less than 30% of these oocytes enter anaphase with segregation errors. MRE11, but not ATM, is essential to detect DSBs in prophase I and is involved in H2AX phosphorylation during metaphase I. Inhibiting MRE11 by mirin during meiotic maturation results in anaphase bridges and also increases the number of gH2AX foci in metaphase II. Compromised DNA integrity in mirin-treated oocytes indicates a role for MRE11 in chromosome integrity during meiotic maturation.
Mammalian oocytes are arrested at meiotic prophase I. The dual-specificity phosphatase CDC25B is essential for cyclin-dependent kinase 1 (CDK1) activation that drives resumption of meiosis. CDC25B reverses the inhibitory effect of the protein kinases WEE1/MYT1 on CDK1 activation. Cdc25b−/- female mice are infertile because oocytes cannot activate CDK1. To identify a role for CDC25B following resumption of meiosis, we restored CDK1 activation in Cdc25b−/- oocytes by inhibiting WEE1/MYT1, or expressing EGFP-CDC25A or constitutively active EGFP-CDK1 from microinjected cRNAs. Forced CDK1 activation in Cdc25b−/- oocytes allowed resumption of meiosis, but oocytes mostly arrested at metaphase I (MI) with intact spindles. Similarly, ∼1/3 of Cdc25b+/- oocytes with reduced amount of CDC25B arrest in MI. MI arrested Cdc25b−/- oocytes also display a transient decrease in CDK1 activity similar to Cdc25b+/+ oocytes during the MI-MII transition, whereas Cdc25b+/- oocytes exhibit only a partial APC/C activation and anaphase I entry. Thus, CDC25B is necessary for resumption of meiosis and the MI-MII transition.
After fertilization, remodeling of the oocyte and sperm genomes is essential to convert these highly differentiated non-dividing transcriptionally quiescent cells into early cleavage-stage transcriptionally active totipotent blastomeres. This developmental transition is accompanied by cell cycle adaptation such as lengthening or shortening of the gap phases G1 and G2. However, regulation of these cell cycle changes is poorly understood, especially in mammals. Checkpoint kinase 1 (CHK1) is a protein kinase that regulates cell cycle progression in somatic cells. Here, we show that CHK1 regulates cell cycle progression in early mouse embryos by restraining CDK1 kinase activity due to CDC25A phosphatase degradation. CHK1 kinase also ensures the long G2 phase needed for genome activation and reprogramming gene expression in 2-cell stage mouse embryos. Last,Chk1depletion leads to DNA damage and chromosome segregation errors that result in aneuploidy and infertility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.