Aims: The aim of this work is to analyse the effect of pH, fungal identity and P chemical nature on microbial development and phosphatase release, discussing solubilization and mineralization processes in P cycling. Methods and Results: P solubilizing fungi (Talaromyces flavus, T. helicus L, T. helicus N, T. diversus and Penicillium purpurogenum) were grown under three pH conditions (6, 6Á5 and 8Á5) and with different inorganic (calcium, iron, aluminium and rock) and organic (lecithin and phytate) P sources. P solubilization, mineralization, growth and phosphatase production were recorded. Acid and neutral environments maximized fungal development and P recycling. P chemical nature changed the phosphatases release pattern depending on the fungal identity. Acid phosphatase activity was higher than alkaline phosphatases, regardless of pH or sample times. Alkaline phosphatases were affected by a combination of those factors. Conclusions: P chemical nature and pH modify fungal growth, P mineralization and solubilization processes. The underlying fungal identitydependent metabolism governs the capacity and efficiency of P solubilization and mineralization. P solubilization and mineralization processes are interrelated and simultaneously present in soil fungi. Significance and Impact of the study: This study constitutes a reference work to improve the selection of fungal bioinoculants in different environmental conditions, highlighting their role in P cycling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.