Tubulins play crucial roles in cell division, intracellular traffic, and cell shape. Tubulin concentration is autoregulated by feedback control of messenger RNA (mRNA) degradation via an unknown mechanism. We identified tetratricopeptide protein 5 (TTC5) as a tubulin-specific ribosome-associating factor that triggers cotranslational degradation of tubulin mRNAs in response to excess soluble tubulin. Structural analysis revealed that TTC5 binds near the ribosome exit tunnel and engages the amino terminus of nascent tubulins. TTC5 mutants incapable of ribosome or nascent tubulin interaction abolished tubulin autoregulation and showed chromosome segregation defects during mitosis. Our findings show how a subset of mRNAs can be targeted for coordinated degradation by a specificity factor that recognizes the nascent polypeptides they encode.
Kinetochores are the central force-generating machines that move chromosomes during cell division. It is generally assumed that kinetochores move in an autonomous manner. However, we reveal here that movements of neighboring sister-kinetochore pairs in metaphase are correlated in a distance-dependent manner. This correlation increases in the absence of kinetochore oscillations or stable end-on attachments. This suggests that periodic movements of bioriented chromosomes limit the correlated motion of nonsisters. Computer simulations show that these correlated movements can occur when elastic crosslinks are placed between the K-fibers of oscillating kinetochores. Strikingly, inhibition of the microtubule crosslinking motor kinesin-5 Eg5 leads to an increase in nonsister correlation and impairs periodic oscillations. These phenotypes are partially rescued by codepletion of the kinesin-12 Kif15, demonstrating a function for kinesin-5 and kinesin-12 motors in driving chromosome movements, possibly as part of a crosslinking structure that correlates the movements of nonsister kinetochores.
The Ska complex is crucial for kinetochore–microtubule stability and is a substrate of Aurora B, master regulator of kinetochore–microtubule attachment dynamics. Here, Redli et al. show that Ska promotes Aurora B activity to limit its own microtubule and kinetochore association and ensure proper chromosome biorientation and segregation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.