BackgroundErythropoietin receptor (EPOR) is a functional membrane-bound cytokine receptor. Erythropoietin (EPO) represents an important hematopoietic factor for production, maturation and differentiation of erythroid progenitors. In non-hematopoietic tissue, EPO/EPOR signalization could also play cytoprotective and anti-apoptotic role. Several studies identified pro-stimulating EPO/EPOR effects in tumor cells; however, numerous studies opposed this fact due to the usage of unspecific EPOR antibodies and thus potential absence or very low levels of EPOR in tumor cells. It seems that this problem is more complex and therefore we have decided to focus on EPOR expression at several levels such as the role of methylation in the regulation of EPOR expression, identification of possible EPOR transcripts and the presence of EPOR protein in selected tumor cells.MethodsMethylation status was analysed by bisulfite conversion reaction, PCR and sequencing. The expression of EPOR was monitored by quantitative RT-PCR and western blot analysis.ResultsIn this study we investigated the methylation status of exon 1 of EPOR gene in selected human cancer cell lines. Our results indicated that CpGs methylation in exon 1 do not play a significant role in the regulation of EPOR transcription. However, methylation status of EPOR exon 1 was cell type dependent. We also observed the existence of two EPOR splice variants in human ovarian adenocarcinoma cell line - A2780 and confirmed the expression of EPOR protein in these cells using specific A82 anti-EPOR antibody.ConclusionWe outlined the methylation status of all selected cancer cell lines in exon 1 of EPOR gene and these results could benefit future investigations. Moreover, A82 antibody confirmed our previous results demonstrating the presence of functional EPOR in human ovarian adenocarcinoma A2780 cells.
Vulvar cancer (VC) is a specific form of malignancy accounting for 5–6% of all gynaecologic malignancies. Although VC occurs most commonly in women after 60 years of age, disease incidence has risen progressively in premenopausal women in recent decades. VC demonstrates particular features requiring well-adapted therapeutic approaches to avoid potential treatment-related complications. Significant improvements in disease-free survival and overall survival rates for patients diagnosed with post-stage I disease have been achieved by implementing a combination therapy consisting of radical surgical resection, systemic chemotherapy and/or radiotherapy. Achieving local control remains challenging. However, mostly due to specific anatomical conditions, the need for comprehensive surgical reconstruction and frequent post-operative healing complications. Novel therapeutic tools better adapted to VC particularities are essential for improving individual outcomes. To this end, cold atmospheric plasma (CAP) treatment is a promising option for VC, and is particularly appropriate for the local treatment of dysplastic lesions, early intraepithelial cancer, and invasive tumours. In addition, CAP also helps reduce inflammatory complications and improve wound healing. The application of CAP may realise either directly or indirectly utilising nanoparticle technologies. CAP has demonstrated remarkable treatment benefits for several malignant conditions, and has created new medical fields, such as “plasma medicine” and “plasma oncology”. This article highlights the benefits of CAP for the treatment of VC, VC pre-stages, and postsurgical wound complications. There has not yet been a published report of CAP on vulvar cancer cells, and so this review summarises the progress made in gynaecological oncology and in other cancers, and promotes an important, understudied area for future research. The paradigm shift from reactive to predictive, preventive and personalised medical approaches in overall VC management is also considered.
Colorectal cancer (CRC) is a multifactorial disease and one of the most malignant tumours. In addition to the sporadic form, familial occurrences, particularly hereditary non-polyposis CRC-Lynch syndrome (LS)-are often observed. LS is caused by a germline mutation in mismatch repair (MMR) genes, whose task it is to correct errors in the DNA structure that result from its replication. The aim of the present study was to stratify CRC patients using molecular diagnostics and next generation sequencing, according to the chosen criteria [positive for microsatellite instability (MSI) and negative for a BRAF mutation and MutL homolog 1 ( MLH1 ) methylation], and subsequently to detect pathological germline mutations in MMR genes in Slovak patients. To exclude patients with MSI from further testing, the present study detected the BRAF V600E mutation and examined MLH1 methylation status. From the 300 CRC patients, 37 cases with MSI were identified. In the MSI-positive samples, 13 cases of BRAF V600E mutation were recorded. In 24 BRAF -negative patients, 11 cases of epigenetic methylation of MLH1 and 12 cases without MLH1 methylation suspected for LS were detected, and it was not possible to analyse the methylation phenotype of 1 sample. Thus, the present study reports the novel deletion of four nucleotides, 1627_1630del AAAG (Glu544Lysfs*26) in MSH6 , probably associated with LS. A second case with a nonsense mutation in MSH was also detected, namely MMR_c.1030C>T (p.Q344X).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.