The stability of metal-humate complexes is an important factor determining and predicting speciation, mobility and bioavailability of heavy metals in the environment. A comparative investigation of the complexation of Cu(II) and Pb(II) with humic acid and humic-like ligands, such as benzoic and salicylic acid, was performed. The analysis was realized at pH 4.0, a temperature of 25 °C and at an ionic strength of 0.01 mol dm -3 (NaCl) using the Schubert ion-exchange method and its modified form. The stability constants were calculated from the experimental data by the Schubert method for complexes with benzoic and humic acid. A modified Schubert method was used for the determination of the stability constants of the complexes with salicylic acid. It was found that Cu(II) and Pb(II) form mononuclear complexes with benzoic and humic acid while with salicylic acid both metals form polynuclear complexes. The results indicate that Pb(II) has a higher binding ability than Cu(II) to all the investigated ligands. The Cu(II)-salicylate and Pb(II)-salicylate complexes showed noticeable higher stability constants compared with their complexes with humic acid, while the stabilities of the complexes with benzoic acid differed less. Salicylic and benzoic acids as humic-like ligands can be used for setting the range of stability constants of humic complexes with Cu(II) and Pb(II).
Cyanobacteria and microalgae are abundant biota groups in eutrophic freshwater ecosystems, serving as a food source for many aquatic organisms, including the larvae of non-biting midges Journal Pre-proof J o u r n a l P r e -p r o o f 2 (Chironomidae). Many species of cyanobacteria are toxin producers, which can act as stressors to other organisms. The present study aimed to analyze and compare the effects of dietary exposure to the common toxic cyanobacteria Anabaena sp. and non-toxic microalgae Chlorella sp. in Chironomus riparius larvae. Microcystin was detected and quantified in the methanolic extract of Anabaena sp. using the HPLC-DAD technique, and it was identified as microcystin-LR. Both Anabaena sp. and Chlorella sp. were suitable food sources to enable the survival of C. riparius larvae in laboratory conditions, causing negligible mortality and significant differences in the larval mass (ANOVA and Post hoc Tukey HSD test; p<0.05) and hemoglobin concentration (Student"s t-test; p<0.05). Oxidative stress parameters such as advanced oxidation protein products (AOPP), thiobarbituric acid reactive substances (TBARS), catalase (CAT) and superoxide dismutase (SOD) activity, and DNA damage, were also investigated. One-way ANOVA, followed by the Post hoc Tukey HSD test, showed a significant increase in AOPP and CAT for the group of larvae fed with Chlorella sp. The same test showed moderate DNA damage in both groups of larvae, with greater damage in the group fed with Anabaena sp. Thus, Chlorella sp. and microcystin-LR producing Anabaena sp. are food sources that did not result in any drastic acute effect on the population level of C. riparius larvae. However, sub-individuallevel endpoints revealed significant effects of the treatments, since they caused oxidative stress and DNA damage that may pose a danger to successive generations of test organisms.
The complexation of humic acid with certain heavy metal ions (Co(II), Ni(II), Cu(II), Zn(II) and Pb(II)) was investigated. The stability constants of humate complexes were determined by a method based on the distribution of metal ions between solution and resin in the presence and the absence of ligand, known as Schubert's ion exchange method. Experiments were performed at 25 °C, pH 4.0 and ionic strength of 0.01 mol dm-3. It was found that the 1:1 complexes were formed between metal ions and humic acid. Obtained results of the stability constants, log β mn , of complexes formed between the metal ions and humic acid follow the order Co(II) < Ni(II) < Cu(II) > Zn(II), which is the same as in the Irving-Williams series for the binding strength of divalent metal ion complexes. The stability constant of complex between Pb(II) ions and humic acid is greater than the stability constants of other investigated metal-humate complexes. The investigation of interaction between heavy metal ions and humics is important for the prediction of the distribution and control of the migration of heavy metals in natural environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.