Background: We have previously shown that metzincin protease ADAMTS-4 accompanies renal fibrogenesis, as it appears in the blood of hemodialysis patients. Methods: Native kidney (NKB) and kidney transplant (TXCI) biopsy samples as well as plasma from patients with various stages of CKD were compared to controls. In paired analysis, 15 TXCI samples were compared with their zero-time biopsies (TX0). Tissues were evaluated and scored (interstitial fibrosis and tubular atrophy (IFTA) for NKB and Banff ci for TXCI). Immunohistochemical (IHC) staining for ADAMTS-4 and BMP-1 was performed. Plasma ADAMTS-4 was detected using ELISA. Results: ADAMTS-4 IHC expression was significantly higher in interstitial compartment (INT) of NKB and TXCI group in peritubular capillaries (PTC) and interstitial stroma (INT). Patients with higher stages of interstitial fibrosis (ci > 1 and IFTA > 1) expressed ADAMTS-4 in INT more frequently in both groups (p = 0.005; p = 0.013; respectively). In paired comparison, TXCI samples expressed ADAMTS-4 in INT and PTC more often than TX0. ADAMTS-4 plasma concentration varied significantly across CKD stages, being highest in CKD 2 and 3 compared to other groups (p = 0.0064). Hemodialysis patients had higher concentrations of ADAMTS-4 compared to peritoneal dialysis (p < 0.00001). Conclusion: ADAMTS-4 might have a significant role in CKD as a potential novel diagnostic indicator.
BK virus (BKV) is a polyomavirus with high seroprevalence in the general population with an unremarkable clinical presentation in healthy people, but a potential for causing serious complications in immunosuppressed transplanted patients. Reactivation or primary infection in kidney allograft recipients may lead to allograft dysfunction and subsequent loss. Currently, there is no widely accepted specific treatment for BKV infection and reduction of immunosuppressive therapy is the mainstay therapy. Given this and the sequential appearance of viruria-viremia-nephropathy, screening and early detection are of utmost importance. There are numerous risk factors associated with BKV infection including genetic factors, among them human leukocyte antigens (HLA) and killer cell immunoglobulin-like receptors (KIR) alleles have been shown to be the strongest so far. Identification of patients at risk for BKV infection would be useful in prevention or early action to reduce morbidity and progression to frank nephropathy. Assessment of risk involving HLA ligands and KIR genotyping of recipients in the pre-transplant or early post-transplant period might be useful in clinical practice. This review summarizes current knowledge of the association between HLA, KIR and BKV infection and potential future directions of research, which might lead to optimal utilization of these genetic markers.
Kidney transplant recipient killer cell immunoglobulin‐like receptors (KIR) genotype and HLA‐C status of their donors have been separately associated with BK virus‐associated nephropathy (BKVAN) and BK virus infection. Our aim was to determine whether different combinations of recipients KIR genes and donor HLA‐C ligands influence the risk of BKVAN. Retrospective case‐control study included 23 recipients with BKVAN and 46 recipients with persistently negative BK virus. Donor HLA‐C*07 positivity was associated with lower odds for BKVAN, recipients bearing KIR haplotype AA or lacking any activating KIR genes were more frequent in BKVAN while recipient/donor combination HLA‐C*07 negative/KIR AA positive was significantly associated with BKVAN. Our study complements and confirms results from several previously published studies, suggesting potential clinical usefulness.
Chronic kidney disease (CKD) is the progressive loss of renal function. Although advances have been made in understanding the progression of CKD, key molecular events in complex pathophysiological mechanisms that mark each stage of renal failure remain largely unknown. Changes in plasma protein profiles in different disease stages are important for identification of early diagnostic markers and potential therapeutic targets. The goal of this study was to determine the molecular profile of each CKD stage (from 1 to 5), aiming to specifically point out markedly expressed or downregulated proteins. We performed a cross-sectional shotgun-proteomic study of pooled plasma across CKD stages and compared them to healthy controls. After sample pooling and heparin-column purification we analysed proteomes from healthy to CKD stage 1 through 5 participants’ plasma by liquid-chromatography/mass-spectrometry. We identified 453 proteins across all study groups. Our results indicate that key events, which may later affect the course of disease progression and the overall pathophysiological background, are most pronounced in CKD stage 2, with an emphasis on inflammation, lipoprotein metabolism, angiogenesis and tissue regeneration. We hypothesize that CKD stage 2 is the tipping point in disease progression and a suitable point in disease course for the development of therapeutic solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.