With increasing use of CT in children and a lack of use of appropriateness criteria, there is a strong need to implement guidelines to avoid unnecessary radiation doses to children.
The article reports results from the largest international dose survey in paediatric computed tomography (CT) in 32 countries and proposes international diagnostic reference levels (DRLs) in terms of computed tomography dose index (CTDI vol) and dose length product (DLP). It also assesses whether mean or median values of individual facilities should be used. A total of 6115 individual patient data were recorded among four age groups: <1 y, >1-5 y, >5-10 y and >10-15 y. CTDIw, CTDI vol and DLP from the CT console were recorded in dedicated forms together with patient data and technical parameters. Statistical analysis was performed, and international DRLs were established at rounded 75th percentile values of distribution of median values from all CT facilities. The study presents evidence in favour of using median rather than mean of patient dose indices as the representative of typical local dose in a facility, and for establishing DRLs as third quartile of median values. International DRLs were established for paediatric CT examinations for routine head, chest and abdomen in the four age groups. DRLs for CTDI vol are similar to the reference values from other published reports, with some differences for chest and abdomen CT. Higher variations were observed between DLP values, based on a survey of whole multi-phase exams. It may be noted that other studies in literature were based on single phase only. DRLs reported in this article can be used in countries without sufficient medical physics support to identify non-optimised practice. Recommendations to improve the accuracy and importance of future surveys are provided.
Objectives: Cone beam CT (CBCT) in dentistry and maxillofacial surgery is a widely used imaging method for the assessment of various maxillofacial and dental pathological conditions. The objective of this study was to summarize the results of a multinational retrospective–prospective study that focused on patient exposure in this modality. Methods: The study included 27 CBCT units and 325 adult and paediatric patients, in total. Data on patients, clinical indications, technical parameters of exposure, patient dose indicator, or, alternatively, dose to phantom were collected. The dose indicator used was air kerma–area product, PKA. Results: In most scanners operators are offered with a variety of options regarding technical parameters, especially the field of view size. The median and the third quartile value of PKA for adult patients in 14 different facilities were 820 mGy cm² and 1000 mGy cm² (interquartile range = 1058 mGy cm²), and 653 mGy cm² and 740 mGy cm² (interquartile range = 1179 mGy cm²) for children, as reported by four different institutions. Phantom dose data were reported from 15 institutions, and median PKA ranged from 125 mGy cm² to 1951 mGy cm². Median PKA values varied by more than a 10-fold between institutions, mainly due to differences in imaging protocol used, in particular field of view and tube current-exposure time product. Conclusions: The results emphasize the need for a cautious approach to using dental CBCT. Imaging only when the clinical indications are clear, accompanied with the appropriate radiographic techniques and the optimum imaging protocol, will help reduce radiation dose to patients.
ObjectiveThis study presents national surveys of patient exposure from nuclear medicine (NM) diagnostic procedures in 2010 and 2015 in the Republic of Croatia.MethodsThe survey was performed according to the European Commission Dose DataMed (DDM) project methodology. 28 most frequent NM diagnostic procedures were identified. Data about frequencies of procedures and average administered activities of radioisotopes used in those procedures were collected. Average administered activities were converted to effective doses according to the dose conversion coefficients. Then the collective effective dose to the population and an effective dose per capita were calculated based on the number of the most frequent NM diagnostic procedures and the average effective dose per procedure.ResultsIn 2010, 41200 NM diagnostic procedures led to 146.7 manSv collective effective dose to the population and in 2015, 42000 NM diagnostic procedures led to 146.8 manSv collective effective dose to the population. The frequencies of NM diagnostic procedures were 9.7 and 9.8 annually per 1000 population with 34.1 μSv and 34.2 μSv effective dose per capita for 2010 and 2015, respectively. The main contributors to the annual collective dose from NM in Croatia are examinations of the bone, heart, thyroid and PET/CT tumour diagnostic. Average administered activities have not changed considerably from 2010 to 2015. Nevertheless, within the frequency of some of the procedures, significant changes were found in five-year period.ConclusionsFrequencies, average administered activities and collective effective dose to the population from NM diagnostic procedures in Croatia are comparable to the values reported by other European surveys. Changes were found between 2010 and 2015 and we intend to perform this study periodically to identify possible trends, but also to raise awareness about the potential dose optimization.
Objective: To investigate the relationship of the effective dose and dose area product (DAP) in dental cone beam computed tomography (CBCT) examinations and to propose conversion factors for estimation of effective doses of the patients using DAP. Dependence of organ doses on DAP was also investigated. Materials and Methods: Different exposure geometries in Cranex3Dx CBCT device were simulated using Monte Carlo simulation and computational anthropomorphic phantom. Then organ doses and effective dose for every exposure geometry was compared to DAP and analysed. Results: The effective dose in all simulated CBCT protocols and positions with 180° tube rotation ranged from 5 μSv for 50 × 50 mm2 field of view (FOV) localised on one tooth using lowest resolution to 265 μSv for the largest FOV and highest resolution. In case of 360° tube rotation the effective dose ranges from 6 to 332 μSv for the same FOV sizes and positions as well as resolutions as in 180° tube rotation. Conclusions: Though the DAP introduces a large uncertainty in the risk measure in dental CBCT, it represents the dose and FOV size which are the most important scanning parameters affecting the dose. To decrease uncertainty in the risk measure, the effective dose has to be estimated for usual clinical positions of the FOV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.