The influence of the ageing temperature on the hardness, electrical conductivity, thermal diffusivity and thermal conductivity of the EN AW-7075 aluminium alloy was studied in this paper. After solution treating the alloy at 480 °C for 1 h and quenching it in ice water, the investigated alloy was characterized using Differential Thermal Analysis (DTA) in order to determine the optimal temperatures for the isochronal ageing treatments. Afterwards, isochronal ageing was conducted at the temperature range of 110 °C-250 °C for 30 min The hardness, electrical conductivity, thermal diffusivity, thermal conductivity and microstructural features were investigated during the ageing treatments. Hardness had a peak value after ageing at 150 °C, while other properties gradually increased with the ageing temperature. Microstructural investigation of the aged alloy by SEM-EDS revealed the existence of precipitated phases that appear homogenously distributed in the microstructure.
Thermal transport properties of solid Bi-Cu alloys have been investigated over a wide composition range and temperature range ranging from 25 to 250 °C. The flash method was used to determine thermal diffusivity. Thermal diffusivity was discovered to decrease continuously with increasing temperature and bismuth content. The indirect Archimedean method was used to determine the density of the Bi-Cu alloys at 25 °C. The obtained results show that the density of the studied alloys decreases slightly as the copper content increases. Thermal conductivity of the alloys was calculated using measured diffusivity, density, and a calculated specific heat capacity. The thermal conductivity of the studied Bi-Cu alloys decreases with increasing temperature and bismuth content, similar to thermal diffusivity. SEM with energy dispersive X-ray spectrometry (EDS) and differential scanning calorimetry (DSC) were used to examine the microstructure and melting behavior of Bi-Cu alloys, respectively. The eutectic temperature was measured to be 269.9±0.1 °C, and the measured phase transition temperatures and heat effects were compared to thermodynamic calculations using the CALPHAD method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.