To study in vivo CD8 T cell differentiation, we quantified the coexpression of multiple genes in single cells throughout immune responses. After in vitro activation, CD8 T cells rapidly express effector molecules and cease their expression when the antigen is removed. Gene behavior after in vivo activation, in contrast, was quite heterogeneous. Different mRNAs were induced at very different time points of the response, were transcribed during different time periods, and could decline or persist independently of the antigen load. Consequently, distinct gene coexpression patterns/different cell types were generated at the various phases of the immune responses. During primary stimulation, inflammatory molecules were induced and down-regulated shortly after activation, generating early cells that only mediated inflammation. Cytotoxic T cells were generated at the peak of the primary response, when individual cells simultaneously expressed multiple killer molecules, whereas memory cells lost killer capacity because they no longer coexpressed killer genes. Surprisingly, during secondary responses gene transcription became permanent. Secondary cells recovered after antigen elimination were more efficient killers than cytotoxic T cells present at the peak of the primary response. Thus, primary responses produced two transient effector types. However, after boosting, CD8 T cells differentiate into long-lived killer cells that persist in vivo in the absence of antigen.
Optineurin is a widely-expressed polyubiquitin (polyUb)-binding protein that has been implicated in regulating cell signaling via its NEMO-homologous C-terminal Ub-binding region. Its functions are controversial, with in vitro studies finding that optineurin suppressed TNF-mediated NF-κB activation and virus-induced activation of IRF3, whereas bone marrow-derived macrophages (BMDM) from mice carrying an optineurin Ub-binding point mutation had normal TLR-mediated NF-κB activation and diminished IRF3 activation. We have generated a mouse model in which the entire Ub-binding C-terminal region is deleted (Optn470T). Akin to C-terminal optineurin mutations found in patients with certain neurodegenerative diseases, Optn470T was expressed at substantially lower levels than the native protein, allowing assessment not only of the lack of Ub-binding but also of protein insufficiency. Embryonic lethality with incomplete penetrance was observed for 129 x C57BL/6 Optn470T/470T mice, but after further backcrossing to C57BL/6, offspring viability was restored. Moreover, the mice that survived were indistinguishable from wild type littermates and had normal immune cell distributions. Activation of NF-κB in Optn470T BMDM and BM-derived dendritic cells (BMDC) with TNF or via TLR4, T cells via the TCR, and B cells with LPS or anti-CD40 was normal. In contrast, optineurin and/or its Ub-binding function was necessary for optimal TBK1 and IRF3 activation, and both Optn470T BMDM and BMDC had diminished IFN-β production upon LPS stimulation. Importantly, Optn470T mice produced less IFN-β upon LPS challenge. Therefore, endogenous optineurin is dispensable for NF-κB activation but necessary for optimal IRF3 activation in immune cells.
Despite wide genetic, environmental and clinical heterogeneity in amyotrophic lateral sclerosis, a rapidly fatal neurodegenerative disease targeting motoneurons, neuroinflammation is a common finding. It is marked by local glial activation, T cell infiltration and systemic immune system activation. The immune system has a prominent role in the pathogenesis of various chronic diseases, hence some of them, including some types of cancer, are successfully targeted by immunotherapeutic approaches. However, various anti-inflammatory or immunosuppressive therapies in amyotrophic lateral sclerosis have failed. This prompted increased scrutiny over the immune-mediated processes underlying amyotrophic lateral sclerosis. Perhaps the biggest conundrum is that amyotrophic lateral sclerosis pathogenesis exhibits features of three otherwise distinct immune dysfunctions –excessive inflammation, autoimmunity and inefficient immune responses. Epidemiological and genome-wide association studies show only minimal overlap between amyotrophic lateral sclerosis and autoimmune diseases, so excessive inflammation is usually thought to be secondary to protein aggregation, mitochondrial damage or other stresses. In contrast, several recently characterized amyotrophic lateral sclerosis-linked mutations, including those in TBK1, OPTN, CYLD and C9orf72, could lead to inefficient immune responses and/or damage pile-up, suggesting that an innate immunodeficiency may also be a trigger and/or modifier of this disease. In such cases, nonselective immunosuppression would further restrict neuroprotective immune responses. Here we discuss multiple layers of immune-mediated neuroprotection and neurotoxicity in amyotrophic lateral sclerosis. Particular focus is placed on individual patient mutations that directly or indirectly affect the immune system, and the mechanisms by which these mutations influence disease progression. The topic of immunity in amyotrophic lateral sclerosis is timely and relevant, because it is one of the few common and potentially malleable denominators in this heterogenous disease. Importantly, amyotrophic lateral sclerosis progression has recently been intricately linked to patient T cell and monocyte profiles, as well as polymorphisms in cytokine and chemokine receptors. For this reason, precise patient stratification based on immunophenotyping will be crucial for efficient therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.