BackgroundHIV patients on antiretroviral therapy have shown elevated incidence of dyslipidemia, lipodystrophy, and cardiovascular disease (CVD). Most studies, however, focus on cohorts from developed countries, with less data available for these co-morbidities in Ethiopia and sub-Saharan Africa.MethodsAdult HIV-negative (n = 36), treatment naïve (n = 51), efavirenz (EFV)-treated (n = 91), nevirapine (NVP)-treated (n = 95), or ritonavir-boosted lopinavir (LPV/r)-treated (n=44) subjects were recruited from Black Lion Hospital in Addis Ababa, Ethiopia. Aortic pressure, augmentation pressure, and pulse wave velocity (PWV) were measured via applanation tonometry and carotid intima-media thickness (cIMT) and carotid arterial stiffness, and brachial artery flow-mediated dilation (FMD) were measured via non-invasive ultrasound. Body mass index, waist-to-hip circumference ratio (WHR), skinfold thickness, and self-reported fat redistribution were used to quantify lipodystrophy. CD4+ cell count, plasma HIV RNA levels, fasting glucose, total-, HDL-, and LDL-cholesterol, triglycerides, hsCRP, sVCAM-1, sICAM-1, leptin and complete blood count were measured.ResultsPWV and normalized cIMT were elevate and FMD impaired in EFV- and LPV/r-treated subjects compared to NVP-treated subjects; normalized cIMT was also elevated and FMD impaired in the EFV- and LPV/r-treated subjects compared to treatment-naïve subjects. cIMT was not statistically different across groups. Treated subjects exhibited elevated markers of dyslipidemia, inflammation, and lipodystrophy. PWV was associated with age, current EFV and LPV/r used, heart rate, blood pressure, triglycerides, LDL, and hsCRP, FMD with age, HIV duration, WHR, and glucose, and cIMT with age, current EFV use, skinfold thickness, and blood pressure.ConclusionsCurrent EFV- or LPV/r-treatment, but not NVP-treatment, correlated with elevated markers of atherosclerosis, which may involve mechanisms distinct from traditional risk factors.
HIV patients on highly active antiretroviral therapy (HAART) exhibit elevated incidence of cardiovascular disease, including a higher risk of myocardial infarction and prevalence of atherosclerotic lesions, as well as increases in markers of subclinical atherosclerosis including increased carotid artery intima-media thickness, increased arterial stiffness, and impaired flow-mediated dilation. Both HAART and HIV-infection are independent risk factors for atherosclerosis and myocardial infarction. Studies implicate the HIV proteins tat, gp120, vpu, and nef in early on-set atherosclerosis. The objective of this study was to quantify the role of expression of HIV-1 proteins on the vascular function, biomechanics, and geometry of common carotid arteries and aortas. This study employed NL4-3Δ gag/pol transgenic mice (HIV-Tg), which contain the genetic sequence for the HIV-1 proteins env, tat, nef, rev, vif, vpr, and vpu but lacks the gag and pol genes and reports that HIV-Tg mice have impaired aortic endothelial function, increased carotid intima-media thickness (c-IMT), and increased arterial stiffness. Further, HIV-Tg arteries show decreased elastin content, increased cathepsin K and cathepsin S activity, and increased mechanical residual stress. Thus, mice that express HIV proteins exhibit pre-clinical markers of atherosclerosis and these markers correlate with changes in markers of vascular remodeling. These findings are consistent with the hypothesis that HIV-proteins, independent of HAART treatment or HIV infection, could play a role in of the development of cardiovascular disease.
HIV positive patients on highly active antiretroviral therapy (HAART) have shown elevated incidence of a number of non-AIDS defining co-morbidities, including cardiovascular disease. Given that HAART regimens contain a combination of at least three drugs, that disease management often requires adjustment of these regimens, and HIV, independent of HAART, also plays a role in development of co-morbidities, determining the role of specific HAART drugs and HIV infection itself from clinical data remains challenging. To characterize specific mediators and underlying mechanisms of disease, in vitro and in vivo animal models are required, in parallel with clinical data. Given its low cost azidothymidine (AZT) contributes to the backbone of a large proportion of HAART treated patients in the developing world where much of the global burden of HIV resides. The goal of this study was to test the hypothesis that AZT can lead to proatherogenic changes including the subclinical markers of arterial stiffening and intima-media thickening in mice. AZT (100 mg/kg) or vehicle was administered to wild-type FVB/N mice via oral gavage for 35 days. Cylindrical biaxial biomechanical tests on the common carotid arteries and suprarenal aortas exhibited arterial stiffening in AZT mice compared to controls. Multiphoton microscopy and histology demonstrated that AZT led to increased intima-media thickness. These data correlated with decreased elastin content and increased protease activity as measured by cathepsin zymography; no differences were observed in collagen content or organization, in vivo axial stretch, or opening angle. Thus, this study suggests the drug AZT has significant effects on the development of subclinical markers of atherosclerosis.
Major advances in highly active antiretroviral therapies (HAART) have extended the lives of people living with HIV, but there still remains an increased risk of death by cardiovascular diseases (CVD). HIV proteins have been shown to contribute to cardiovascular dysfunction with effects on the different cell types that comprise the arterial wall. In particular, HIV-1 transactivating factor (Tat) has been shown to bind to endothelial cells inducing a range of responses that contribute to vascular dysfunction. It is well established that hemodynamics also play an important role in endothelial cell mediated atherosclerotic development. When exposed to low or oscillatory shear stress, such as that found at branches and bifurcations, endothelial cells contribute to proteolytic vascular remodeling by upregulating cathepsins, potent elastases and collagenases that contribute to altered biomechanics and plaque formation. Mechanisms to understand the influence of Tat on shear stress mediated vascular remodeling have not been fully elucidated. Using an in vivo HIV-Tg mouse model and an in vitro cone and plate shear stress bioreactor to actuate physiologically relevant pro-atherogenic or atheroprotective shear stress on human aortic endothelial cells, we have shown synergism between HIV proteins and pro-atherogenic shear stress to increase endothelial cell expression of the powerful protease cathepsin K, and may implicate this protease in accelerated cardiovascular disease in people living with HIV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.