Improving the micronutrients in food has become an important field of the Second Green Revolution. In recent years, minor bioactive compounds such as polyphenols, pigments and carotenoids, have attracted more and more interest from both researchers and food manufactures as health-promoting and disease-preventing effects in both in vitro and in vivo studies. One of plant pigments, wheat anthocyanins as plant phenolics are increasingly attractive as natural compounds positively affecting consumer´s health and condition moreover wheat is staple food source consumed usually daily. For a purple, blue, or red colour of wheat seed are responsible glycosylated cyanidins, delphinidins, malvinidins, pelargonidins, petunidins, and peonidins located in aleurone layer or pericarp, respectively. Other than white seed colour is not natural for common hexaploid wheat but this trait can be introduced from donors by aimed breeding programs. The way of wheat anthocyanins to provide positive effects for consumer´s physiology is limited due to their specific occurrence in seed parts usually removed during grain milling practice and lower stability during processing to foods.
Accumulation of Total Anthocyanins in Wheat GrainIn the recent years, for specific goals of utilization, winter wheat breeding has been aimed on increasing total anthocyanins concentration in winter wheat grains considering their high antioxidant activity. The aim of research was to evaluate grain colour development in four wheat genotypes (ANK 28A and 62/0 purple pericarp, UC 66049 blue aleurone and Ilona red pericarp) during grain filling period. Grain samples from two replications of field experiment, established in the vegetation 2010/11, were taken in five to six sampling times. Total anthocyanins concentration was determined by spectrophotometer. The genotypes responded differently to the dynamics of total anthocyanins accumulation during grain filling. The process was described by linear and also by polynomial regression on the number of days post anthesis. Genotypes with purple pericarp reached the highest total anthocyanins concentration on the 22ndday post anthesis with increasing and decreasing before and after this sampling time, respectively. At maturity the highest total anthocyanins had UC 66049 (193.38 mg/kg). Newly bred genotype 62/0 had similar concentration (34.50 mg/kg) as its parent ANK 28A (37.80 mg/kg). At maturity, registered cultivar Ilona was about 93.7% lower in total anthocyanins concentration compared to ANK 28A. Significant variability in total anthocyanins concentration indicated that breeding for their increasing is possible.
Hop (Humulus lupulus L.) is a clonally propagated, dioecious, perennial, climbing plant used commercially for their secondary metabolites. The resins containing α- and β-acids, and essential oils produced by the lupulin glands, present on the female flowers are used to add bitterness, aroma and flavour to beer. Recently, flavonoids, including chalcones and flavanones, of hops have been shown to exert a variety of biological activities, including oestrogenic and anticancerogenic characteristics. In this review, we provide a overview of the techniques and opportunities presented by the integration of plant biotechnology into hop improvement. The use of tissue culture techniques such as micropropagation, meristem culture, in vitro storage, adventitious shoot induction, callus culture and cell suspension culture in hops are briefly reviewed. The usefullness of genetic transformation technology to introduce novel traits into hop is also discussed.
Beneficial effects of whole grains of cereals and pseudocereals and their fractions to human physiology are well known and broadly published. Especially secondary metabolites, dominantly from the category of phenolics (or polyphenols), beneficially influence the health physiology and/or prevent disease progress. Within the frame of this study, ten genotypes of four cereals or pseudocereals, respectively, were chosen for their antioxidant activity, determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric reducing antioxidant power (FRAP) and β-carotene-linoleic acid bleaching model (BCLM) mechanisms. Tested genotypes were selected from primary collection based on their antioxidant activity values, as well as higher level of flavonoids or phenolic acids. The stability of antioxidant properties after thermic, acidic, and basic treatments was evaluated. The oat cultivar Sirene and buckwheat cultivar Bogatýr expressed high level of the antioxidant activity, but they lost it due to all types of treatment. Oppositely, treatments increased antioxidant activities in some samples, especially in oat cultivar Maris Oberon, wheat cultivar Ines and Karolinum, or partially in barley cultivars Kompakt (after basic treatment) and Jubilant (acidic and basic treatments). The lack of the antioxidant activity could be observed due to destruction of the key compounds responsible for the antioxidant effect, whereas the increasing activity could be seen due to release of the aglycons from glycosidic forms after treatment. The stability of antioxidant properties could be a valuable parameter of the raw material for manufacturing special foods with functional properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.