We report an approach for extracting the optical constants of bimetallic Ag–Au nanoparticles from the measured surface-plasmon (SP) extinction spectra. The dielectric function of the metal is expressed as an analytic function of the wavelength in which the interband (and all other non-Drude) contributions to the dielectric function are represented by a sum of Lorentz functions. This expression is then used to fit the experimental extinction spectra to appropriate functions based on Mie theory. Three Lorentz functions (plus a Drude term) were found to be sufficient to reproduce the dielectric functions of Ag and Au [P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972)] over the entire 0.6–6.5 eV range reported. With functions of this type, an excellent multiparameter fit of the measured extinction spectrum of colloidal Ag was obtained. Extinction spectra of a series of (Ag)Au hydrosols, prepared by reducing a gold precursor in the presence of previously synthesized silver seed particles with Au mole fractions ranging from 0.1 to 0.8, were measured. The extinction spectra show a single band (attributed to the surface plasmon) for all of the colloids produced, suggesting alloy formation. Transmission electron microscopy (TEM) images, however, indicate clear core–shell contrast for nanoparticles with Au mole fractions 0.4 and higher. With a presumed particle structure consisting of Ag core and Ag/Au alloy shell, very good fits were obtained for all of the measured extinction spectra by using a fitting strategy that restricted the number of parameters allowed to vary freely in the aforementioned dielectric function. The values of the dielectric function of the presumed shells were extracted in this manner as a function of wavelength. For particles with Au mole fraction 0.1–0.3, the results suggest an incompletely formed shell. For particles with higher Au mole fractions, the dielectric function of the shell gradually approaches that of Au. Overall, the results are consistent with a particle structure that consists of a Ag-rich core and Ag/Au alloy shell whose composition is gradually enriched in Au with increasing overall Au mole fraction. The dielectric function of the alloy shells cannot be written merely as a weighted average of the corresponding dielectric functions of Ag and Au. An almost linear decrease of the electron scattering rate in the particle’s shell with the increasing Au mole fraction was determined through this fitting analysis. This was ascribed both to the confinement of the electrons within the shell (which increases in thickness with increasing Au mole fraction) and the gradual change of the composition, and, consequently, of the electrical conductivity of the shell.
Layered core-shell bimetallic silver-gold colloids in the size range of 10-16 nm have been prepared by the seed-growth method. Silver nuclei were covered by gold shells of various thicknesses without any stabilization agent. Interfacial (Ag)Au colloid-2,2′-bipyridine films were prepared from these bimetallic colloids and used for the purpose of analysis of transmission electron microscopy (TEM) images and electron diffraction. Both observed and calculated TEM images were used to characterize the prepared nanoparticles. On the basis of the analysis of TEM images, the calculated TEM image contrast, and results obtained by electron diffraction, energy-dispersive X-ray analysis, and other experiments, the core-shell structure of the prepared (Ag)Au nanoparticles was revealed. Particles were found to consist of a silver core and a gold shell enriched with silver.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.