With the increased usage of cloud computing in production environments, both for scientific workflows and industrial applications, the focus of application providers shifts towards service cost optimisation. One of the ways to achieve minimised service execution cost is to optimise the placement of the service in the resource pool of the cloud data centres. An increasing number of research approaches is focusing on using machine learning algorithms to deal with dynamic cloud workloads by allocating resources to services in an adaptive way. Many of such solutions are intended for cloud infrastructure providers and deal only with specific types of cloud services. In this paper, we present a model-based approach aimed at the providers of applications hosted in the cloud, which is applicable in early phases of the service lifecycle and can be used for any cloud application service. Using several machine learning methods, we create models to predict cloud service cost and response times of two cloud applications. We also explore how to extract knowledge about the effect that the cloud application context has on both service cost and quality of service so that the gained knowledge can be used in the service placement decision process. The experimental results demonstrate the ability of providing relevant information about the impact of cloud application context parameters on service cost and quality of service. The results also indicate the relevance of our approach for applications in preproduction phase since application providers can gain useful insights regarding service placement decision without acquiring extensive training datasets.
Many currently existing cloud cost optimisation solutions are aimed at cloud infrastructure providers, and they often deal only with specific types of application services. Unlike infrastructure providers, the providers of cloud applications are often left without a suitable cost optimisation solution, especially concerning the wide range of different application types. This paper presents an approach that aims to provide an optimisation solution for the providers of applications hosted in the cloud environments, applicable at the early phase of a cloud application lifecycle and for a wide range of application services. The focus of this research is the development of the method for identifying optimised service deployment option in available cloud environments based on the model of the service and its context, intending to minimise the operational cost of the cloud service while fulfilling the requirements defined by the service level agreement. A cloud application context metamodel is proposed that includes parameters related to both the application service and the cloud infrastructure relevant for the cost and quality of service. By using the proposed optimisation method, knowledge is gained about the effects of the cloud application context parameters on the service cost and quality of service, which is then used to determine the optimal service deployment option. The service models are validated using cloud applications deployed in laboratory conditions, and the optimisation method is validated using the simulations based on the proposed cloud application context metamodel. The experimental results based on two cloud application services demonstrate the ability of the proposed approach to provide relevant information about the impact of cloud application context parameters on service cost and quality of service and use this information for reducing service operational cost while preserving the acceptable service quality level. The results indicate the applicability and relevance of the proposed approach for cloud applications in the early service lifecycle phase since application providers can gain valuable insights regarding service deployment decision without acquiring extensive datasets for the analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.