The main waste of wood sanding technology is wood dust. The formation of wood dust affects its behaviour. Wood dust can be in a turbulent form and behaves explosively or in a settled form where it becomes flammable. Dust particles are barely detectable by the naked eye, wood dust still presents substantial health, safety, fire and explosion risks to employees. This article deals with the evaluation of ignition temperature and surface temperature of deposited wood dust samples by selected ignition sources. The influence of selected physical properties of wood dust, the size of the contact area between the ignition source and the combustible material, the spatial arrangement during the ignition and the application time of the ignition source are analysed. The paper describes the behaviour of a 15 mm deposited layer of wood dust of spruce (Picea abies L.), beech (Fagus silvatica L.). oak (Quercus petraea Liebl.) caused by three potential ignition sources—a hot surface, an electric coil and a smouldering cigarette. Prior to the experimental determination of the ignition temperature, dust moisture content which did not significantly affect the ignition phase of the samples, as well as sieve analysis of tested samples were determined. The lowest minimum ignition temperature on the hot plate, as an important property of any fuel, because the combustion reaction of the fuel becomes self-sustaining only above this temperature, was reached by the oak dust sample (280 °C), the highest by the spruce dust sample (300 °C). The ignition process of wood dust was comparable in all samples, differing in the ignition time and the area of the thermally degraded layer. The least effective ignition source was a smouldering cigarette.
Fire characteristic (properties) are used to determine the fire risk and explosion hazard of materials. They are defined as numerical values which describe behavior in the process of burning. They can be determinate by standardized test methods. In this paper is described the most important fire technical characteristic of dust layer (minimum ignition temperature) and the results of standard laboratory method determination for wood dusts, aswell.
Wood and composite panel materials represent a substantial part of the fuel in many building fires. The ability of materials to ignite when heated at elevated temperatures depends on many factors, such as the thermal properties of materials, the ignition temperature, critical heat flux and the environment. Oriented strand board (OSB) without any surface treatment in thicknesses of 12, 15 and 18 mm were used as experimental samples. The samples were gradually exposed to a heat flux of 43 to 50 kW.m−2, with an increase of 1 kW.m−2. At heat fluxes of 49 kW.m−2 and 50 kW.m−2, the ignition times are similar in all OSB thicknesses, in contrast to the ignition times at lower heat fluxes. The influence of the selected factors (thickness and distance from the heat source) was analysed based on the experimentally obtained data of ignition time and weight loss. The experimentally determined value of the heat flux density was 43 kW.m−2, which represented the critical heat flux. The results show a statistically significant effect of OSB thickness on ignition time.
The Environmental Impacts of Fire-Fighting Foams Extinguishing foams are commonly used for extinguishing the fire of flammable liquids, whereby their insulating, choking and quenching effects are exploited. The purpose of the paper is to consider and compare the foams currently used in fire departments, regarding mainly their high extinguishing effect (capability of faster aborted burning on the large surface at low foam consumption), but also their impact on the environment in each stage of their life cycle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.