This work consideres the buckling and postbuckling behaviour of axially compressed layered composite panels including initial failure analysis. For determination stresses in layered composite panels Finite Element Method (FEM) used. A series of experiments were conducted to verify the FEA-results, but also to address the stability and strength of the composite structure. Combining a geometric nonlinear finite element analysis (FEA) based on the von Karman theory and High Order Shear Deformation Theory (HOST) are used to study the first-ply failure behavior as well as the postbuckling behavior of laminated type composite panels. For this purpose and for the investigation of the failure responses improved 4-node layered shell finite elements are used. The finite element formulation is based on the third order shear deformation theory with four-node shell finite elements having eight degres of freedom per node. A simple method is proposed to predict buckling loads and the post-buckling behaviour together with initial failure analysis of layered composite panels. The experiments carried out on SCHRENK system. Comparisons between numerical and experimental results show quite a good agreement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.