This paper presents a novel Non-Intrusive Load Monitoring (NILM) approach focusing on the Energy Efficiency (EE) assessment of residential appliances. This approach (NILMEE) is able to identify the individual consumption of several household devices, providing proper information for evaluating energy efficiency and pointing out the operational issues or labelling mismatches of appliances, while recommending better practices for energy usage in specific consumer installations. The proposed approach was developed and evaluated by embedding the NILM engine on an electronic power meter, which performs a microscopic analysis on measured voltages and currents and provides the load disaggregation using the Conservative Power Theory for the feature extraction, K-Nearest Neighbours for the appliance classification, and the Power Signature Blob for the energy disaggregation. The disaggregation algorithm performance evaluation is carried out using NILMTK. Results show that NILM transcends the regular energy usage calculation, serving as a tool that enables the diagnosis of household appliances using the energy efficiency indexes provided by labels and standards.
This paper shows how the detailed examination of active and nonactive power components may produce new information for modern smart meters. For this purpose, a prototype of electronic power meter has been implemented and applied to the evaluation of the Conservative Power Theory (CPT). Considering five sorts of loads, under four different operating conditions, the experimental results indicate that the CPT is able to provide a good methodology for load characterization, which could possibly benefits consumers and power utilities in several different ways. The results also show that depending on the situation, the analysis of nonactive power terms may be more important than the observation of traditional power quality indices, such as total harmonic distortion, unbalance factors or the fundamental positive sequence power factor.
The Ball and Beam system is a common didactical experiment in control laboratories that can be used to illustrate many different closed-loop control techniques. The plant itself is subjected to many nonlinear effects, which the most common comes from the relative motion between the ball and the beam. The modeling process normally uses the lagrangean formulation. However, many other nonlinear effects, such as non-viscous friction, beam flexibility, ball slip, actuator elasticity, collisions at the end of the beam, to name a few, are present. Besides that, the system is naturally unstable. In this work, we analyze a subset of these characteristics, in which the ball rolls with slipping and the friction force between the ball and the beam is non-viscous (Coulomb friction). Also, we consider collisions at the ends of the beam, the actuator consists of a (rubber made) belt attached at the free ends of the beam and connected to a DC motor. The model becomes, with those nonlinearities, a differential inclusion system. The elastic coefficients of the belt are experimentally identified, as well as the collision coefficients. The nonlinear behavior of the system is studied and a control strategy is proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.