Biodiversity loss from deforestation may be partly offset by the expansion of secondary forests and plantation forestry in the tropics. However, our current knowledge of the value of these habitats for biodiversity conservation is limited to very few taxa, and many studies are severely confounded by methodological shortcomings. We examined the conservation value of tropical primary, secondary, and plantation forests for 15 taxonomic groups using a robust and replicated sample design that minimized edge effects. Different taxa varied markedly in their response to patterns of land use in terms of species richness and the percentage of species restricted to primary forest (varying from 5% to 57%), yet almost all between-forest comparisons showed marked differences in community structure and composition. Cross-taxon congruence in response patterns was very weak when evaluated using abundance or species richness data, but much stronger when using metrics based upon community similarity. Our results show that, whereas the biodiversity indicator group concept may hold some validity for several taxa that are frequently sampled (such as birds and fruit-feeding butterflies), it fails for those exhibiting highly idiosyncratic responses to tropical land-use change (including highly vagile species groups such as bats and orchid bees), highlighting the problems associated with quantifying the biodiversity value of anthropogenic habitats. Finally, although we show that areas of native regeneration and exotic tree plantations can provide complementary conservation services, we also provide clear empirical evidence demonstrating the irreplaceable value of primary forests. biodiversity indicators ͉ congruence ͉ conservation ͉ tropical forests ͉ Amazon
The identification of high-performance indicator taxa that combine practical feasibility and ecological value requires an understanding of the costs and benefits of surveying different taxa. We present a generic and novel framework for identifying such taxa, and illustrate our approach using a large-scale assessment of 14 different higher taxa across three forest types in the Brazilian Amazon, estimating both the standardized survey cost and the ecological and biodiversity indicator value for each taxon. Survey costs varied by three orders of magnitude, and dung beetles and birds were identified as especially suitable for evaluating and monitoring the ecological consequences of habitat change in our study region. However, an exclusive focus on such taxa occurs at the expense of understanding patterns of diversity in other groups. To improve the cost-effectiveness of biodiversity research we encourage a combination of clearer research goals and the use of an objective evidence-based approach to selecting study taxa.
Science has a critical role to play in guiding more sustainable development trajectories. Here, we present the Sustainable Amazon Network ( Rede Amazônia Sustentável , RAS): a multidisciplinary research initiative involving more than 30 partner organizations working to assess both social and ecological dimensions of land-use sustainability in eastern Brazilian Amazonia. The research approach adopted by RAS offers three advantages for addressing land-use sustainability problems: (i) the collection of synchronized and co-located ecological and socioeconomic data across broad gradients of past and present human use; (ii) a nested sampling design to aid comparison of ecological and socioeconomic conditions associated with different land uses across local, landscape and regional scales; and (iii) a strong engagement with a wide variety of actors and non-research institutions. Here, we elaborate on these key features, and identify the ways in which RAS can help in highlighting those problems in most urgent need of attention, and in guiding improvements in land-use sustainability in Amazonia and elsewhere in the tropics. We also discuss some of the practical lessons, limitations and realities faced during the development of the RAS initiative so far.
Summary1. Secondary forests growing on cleared lands and tree plantations are becoming increasingly widespread land-uses in the tropics. Previous studies are divided on the conservation importance of these habitats for tropical forest butterflies. 2. We use a robust sampling design, accounting for both seasonality and vertical stratification, to examine fruit-feeding butterflies (Nymphalidae) in patches of secondary forest and Eucalyptus plantation 2-3 orders of magnitude larger than those previously sampled. 3. We recorded 10 587 butterflies and 128 species in 3200 trap-days. Species richness was highest in primary forest and lowest in plantations, while butterfly abundance showed the opposite response. All habitats were distinct in terms of community structure. 4. There was a significant interaction between habitat and season based on richness and abundance metrics, although not based on community structure. Secondary forest exhibited higher observed richness than primary forest in the peak of the dry-season, but not at other times of the year. This observation could explain the lack of consensus in previous studies, as those reporting higher richness in secondary forest only sampled during the dry-season. 5. In general, habitat quality appeared to be more important than the surrounding landscape in determining butterfly community structure. However, the community structure of the strong-flying Charaxinae was related to the amount of primary forest in surrounding landscape. There was very poor congruence between the response patterns of richness and abundance among different butterfly subfamilies. 6. Linear regressions between resource availability and butterfly abundance showed a strong influence of leaf phenology in both primary and secondary forest, but no influence of fruit phenology. 7. Synthesis and applications : A lack of seasonal replication and small sampling sizes may have led previous studies to over-emphasize the conservation importance of secondary forest and plantations for butterflies. We show that these habitats are significantly poorer than primary forest in terms of number of species, and hold distinct butterfly communities. Although quantifying the number of species restricted to primary forest remains difficult, these results cast doubt on the presumption that secondary habitats will provide refuge for many of the species being lost through deforestation. We therefore strongly urge measures that prioritize the conservation of remaining primary forests where they still exist.
Production landscapes are rarely considered as priority areas for biodiversity conservation in the tropics. Tree plantations have the potential to provide a conservation service in much of the humid tropics since they are rapidly increasing in extent and present less of a structural contrast with native vegetation than many more intensive agricultural land-uses. We used hierarchical partitioning to examine the factors that influence the value of large-scale Eucalyptus plantations for tropical fruit-feeding butterflies (Lepidoptera: Nymphalidae) in the Brazilian Amazon. We focused on evaluating the importance of landscape versus stand-level factors in determining the diversity and composition of butterfly assemblages, and how butterfly-environment relationships vary within and between subfamilies of Nymphalidae. Native understorey vegetation richness had the strongest independent effect on the richness, abundance and composition of all fruit-feeding butterflies, as well as a subset of species that had been recorded in nearby primary forests. However, overall patterns were strongly influenced by the most abundant subfamily (Satyrinae), and vegetation richness was not related to the abundance of any other subfamily, or non-Satyrinae species, highlighting the importance of disaggregating the fruit-feeding Nymphalidae when examining butterfly-environment relationships. Our results suggest that plantations can help conserve a limited number of forest species, and serve to highlight the research that is necessary to understand better the relationship between fruit-feeding butterflies and environmental variables that are amenable to management
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.