Power generation from photovoltaic solar systems contributes to mitigate the problem of climate change. However, the intermittency of solar radiation affects power quality and causes instability in power grids connected to these systems. This paper evaluates the dynamic behavior of solar radiation in an Andean city, which presents rapid power variations that can reach an average of 7.20 kW/min and a variability coefficient of 32.09%. The study applies the ramp-rate control technique to reduce power fluctuations at the point of common coupling (PCC), with the incorporation of an energy storage system. Electric vehicle batteries were used as the storage system due to their high storage capacity and contribution to power system flexibility. The application of the control strategy shows that, with a minimum of five electric vehicle charging stations at the PCC, the rate of change of the photovoltaic can be reduced by 14%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.