The first step in the activation of the classical complement pathway by immune complexes involves the binding of the globular domain (gC1q) of C1q to the Fc regions of aggregated IgG or IgM. Each gC1q domain is a heterotrimer of the C-terminal halves of one A (ghA), one B (ghB), and one C (ghC) chain. Our recent studies have suggested a modular organization of gC1q, consistent with the view that ghA, ghB, and ghC are functionally autonomous modules and have distinct and differential ligand-binding properties. Although C1q binding sites on IgG have been previously identified, the complementary interacting sites on the gC1q domain have not been precisely defined. The availability of the recombinant constructs expressing ghA, ghB, and ghC has allowed us, for the first time, to engineer single-residue substitution mutations and identify residues on the gC1q domain, which are involved in the interaction between C1q and IgG. Because C1q is a charge pattern recognition molecule, we have sequentially targeted arginine and histidine residues in each chain. Consistent with previous chemical modification studies and the recent crystal structure of gC1q, our results support a central role for arginine and histidine residues, especially Arg114 and Arg129 of the ghB module, in the C1q-IgG interaction.
The latex of Croton draco, its extracts and several latex components have been investigated for their influence on both classical (CP) and alternative (AP) activation pathways of the complement system using a hemolytic assay. The best inhibition was found for the classical pathway. The latex, ethyl acetate and ethyl ether extracts exhibited extremely high inhibition on the CP (94, 90 and 77%, respectively) at a concentration of 1 mg/ml. The flavonoid myricitrin, the alkaloid taspine and the cyclopeptides P1 and P2 showed high inhibition on CP (83, 91, 78 and 63%, respectively) at a concentration of 0.9 mm.
Stachys thracica Davidov is a Balkan endemic species distributed in Bulgaria, Greece, and Turkey. In Bulgaria, it is classified as “rare” and is under the protection of the Bulgarian biodiversity law. The aim of our study was to develop an efficient protocol for ex situ conservation of S. thracica and to perform comparative NMR-based metabolite profiling and bioactivity assays of extracts from in situ grown, in vitro cultivated, and ex vitro acclimated plants. Micropropagation of S. thracica was achieved by in vitro cultivation of mono-nodal segments on basal MS medium. Ex vitro adaptation was accomplished in the experimental field with 83% survival while conserved genetic identity between in vitro and ex vitro plants as shown by the overall sequence-related amplified polymorphism marker patterns was established. Verbascoside, chlorogenic acid, and trigonelline appeared the main secondary metabolites in in situ, in vitro cultivated, and ex vitro acclimated S. thracica. High total phenolic and flavonoid content as well as antioxidant and radical scavenging activity were observed in in situ and ex vitro plants. Further, the anti-inflammatory activity of S. thracica was tested by hemolytic assay and a high inhibition of the complement system was observed. Initiated in vitro and ex vitro cultures offer an effective tool for the management and better exploitation of the Stachys secondary metabolism and the selection of lines with high content of bioactive molecules and nutraceuticals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.