The scope of this study is to use a three-dimensional discrete element model to simulate the resilient response of an unbound granular material subjected to sinusoidal loading in a triaxial sample and to compare the simulated results to experimental results. A three-dimensional discrete element model, where each grain interacts with its neighbour grains, allows a micromechanical approach to modelling. By doing the sensitivity analysis on the input parameters the model can be evaluated and insight gained about the factors that affect the resilient behaviour. Uniform spherical grains were used in both the DEM simulations and in the triaxial experiments. Two contact models, linear visco-elastic and Hertzian, and two types of confinement, a uniform cylinder and a flexible membrane, are tested in the simulations. Comparison of the simulation results with the results of similar laboratory experiments shows that the discrete element approach is suitable to model idealised aggregate grains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.