Volume and ejection fraction (EF) measurements of the left ventricle (LV) in 2-D echocardiography are associated with a high uncertainty not only due to interobserver variability of the manual measurement, but also due to ultrasound acquisition errors such as apical foreshortening. In this work, a real-time and fully automated EF measurement and foreshortening detection method is proposed. The method uses several deep learning components, such as view classification, cardiac cycle timing, segmentation and landmark extraction, to measure the amount of foreshortening, LV volume, and EF. A data set of 500 patients from an outpatient clinic was used to train the deep neural networks, while a separate data set of 100 patients from another clinic was used for evaluation, where LV volume and EF were measured by an expert using clinical protocols and software. A quantitative analysis using 3-D ultrasound showed that EF is considerably affected by apical foreshortening, and that the proposed method can detect and quantify the amount of apical foreshortening. The bias
Deformation imaging in echocardiography has been shown to have better diagnostic and prognostic value than conventional anatomical measures such as ejection fraction. However, despite clinical availability and demonstrated efficacy, everyday clinical use remains limited at many hospitals. The reasons are complex, but practical robustness has been questioned, and a large inter-vendor variability has been demonstrated. In this work, we propose a novel deep learning based framework for motion estimation in echocardiography, and use this to fully automate myocardial function imaging. A motion estimator was developed based on a PWC-Net architecture, which achieved an average end point error of (0.06 ± 0.04) mm per frame using simulated data from an open access database, on par or better compared to previously reported state
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.