Product development companies are collecting data in form of Engineering Change Requests for logged design issues and Design Guidelines to accumulate best practices. These documents are rich in unstructured data (e.g., free text) and previous research has pointed out that product developers find current it systems lacking capabilities to accurately retrieve relevant documents with unstructured data. In this research we compare the performance of Search Engine & Natural Language Processing algorithms in order to find fast related documents from two databases with Engineering Change Request and Design Guideline documents. The aim is to turn hours of manual documents searching into seconds by utilizing such algorithms to effectively search for related engineering documents and rank them in order of significance. Domain knowledge experts evaluated the results and it shows that the models applied managed to find relevant documents with up to 90% accuracy of the cases tested. But accuracy varies based on selected algorithm and length of query.
Product development companies collect data in form of Engineering Change Requests for logged design issues, tests, and product iterations. These documents are rich in unstructured data (e.g. free text). Previous research affirms that product developers find that current IT systems lack capabilities to accurately retrieve relevant documents with unstructured data. In this research, we demonstrate a method using Natural Language Processing and document clustering algorithms to find structurally or contextually related documents from databases containing Engineering Change Request documents. The aim is to radically decrease the time needed to effectively search for related engineering documents, organize search results, and create labeled clusters from these documents by utilizing Natural Language Processing algorithms. A domain knowledge expert at the case company evaluated the results and confirmed that the algorithms we applied managed to find relevant document clusters given the queries tested.
Engineering change requests are important and plentiful in the product development process to enhance a product. In this paper we use Markov chains on ECRs in a large product development project and display the results in a Markov chain DSM. The DSM shows statistical probability of a transition pathway for an industrial design process and together with engineering domain knowledge we identify patterns and improvement opportunities. It turns out that 8% of ECRs are closed directly after creation, most common pathway is not followed in early statues and status iterations are seen in the DSM.
The problem at hand is that vast amount of data on industrial changes is captured and stored; yet the present challenge is to systematically retrieve and use them in a purposeful way. This paper presents an industrial case study where complex product development processes are modeled using the design structure matrix (DSM) to analyze engineering change requests sequences. Engineering change requests are documents used to initiate a change process to enhance a product. Due to the amount of changes made in different projects, engineers want to be able to analyze these change processes to identify patterns and propose the best practices. The previous work has not specifically explored modeling engineering change requests in a DSM to holistically analyze sequences. This case study analyzes engineering change request sequences from four recent industrial product development projects and compares patterns among them. In the end, this research can help to identify and guide process improvement work within projects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.