Membrane-bound P2-receptors mediate the actions of extracellular nucleotides in cell-to-cell signalling. P2X-receptors are ligand-gated ion channels, whereas P2Y-receptors belong to the superfamily of G-protein-coupled receptors. So far, the P2Y family is composed of eight cloned and functionally defined subtypes. Five of them (P2Y1, P2Y2, P2Y4, P2Y6 and P2Y11) are present in human tissues. The P2Y3-, p2y8- and tp2y-receptors may be species orthologues. The principal physiological agonists of the cloned human P2Y-receptors are ADP (P2Y1), UTP/ATP (P2Y2), UTP (P2Y4), UDP (P2Y6) and ATP (P2Y11). The rat P2Y4-receptor is activated by both UTP and ATP. Specific patterns of polar amino acid residues in the exofacial portions of transmembrane domains (TMs) 6 and 7 of the P2Y-receptors may account for the ligand specificity of the subtypes. Suramin acts as an antagonist at most P2Y-receptors with the exception of P2Y4- and tp2y-receptors. PPADS has been shown to block P2Y1-, the human P2Y4- and P2Y6-receptors. The nucleotide analogue 2'-deoxy-N6-methyladenosine-3',5'-bisphosphate (MRS 2179), in contrast, seems to be a potent and selective antagonist at the P2Y1-receptor. All cloned and functionally expressed P2Y-receptors are able to couple to phospholipase C. The P2Y11-receptor mediates in addition a stimulation of adenylate cyclase and the tp2y-receptor an inhibition of this signal transduction pathway. Other functionally defined subtypes, e.g., the receptor mediating an inhibition of adenylate cyclase in blood platelets, are not yet cloned. The distribution of P2Y1 mRNA is widespread. The receptor plays a crucial role in blood platelet aggregation and mediates the adenine nucleotide-induced release of the endothelium-derived relaxing factor nitric oxide. P2Y1-receptors may also be involved in the modulation of neuro-neural signalling transmission. P2Y2 transcripts are abundantly distributed. One important example for its functional role is the control of chloride ion fluxes in airway epithelia. The P2Y4-receptor is highly expressed in the placenta. The distribution of the P2Y6-receptor is widespread including heart, blood vessels and brain. The P2Y11-receptor may play a role in the differentiation of immunocytes.
Hypotrichosis simplex is a group of nonsyndromic human alopecias. We mapped an autosomal recessive form of this disorder to chromosome 13q14.11-13q21.33, and identified homozygous truncating mutations in P2RY5, which encodes an orphan G protein-coupled receptor. Furthermore, we identified oleoyl-L-alpha-lysophosphatidic acid (LPA), a bioactive lipid, as a ligand for P2Y5 in reporter gene and radioligand binding experiments. Homology and studies of signaling transduction pathways suggest that P2Y5 is a member of a subgroup of LPA receptors, which also includes LPA4 and LPA5. Our study is the first to implicate a G protein-coupled receptor as essential for and specific to the maintenance of human hair growth. This finding may provide opportunities for new therapeutic approaches to the treatment of hair loss in humans.
Brown adipose tissue (BAT) is specialized in energy expenditure, making it a potential target for anti-obesity therapies. Following exposure to cold, BAT is activated by the sympathetic nervous system with concomitant release of catecholamines and activation of β-adrenergic receptors. Because BAT therapies based on cold exposure or β-adrenergic agonists are clinically not feasible, alternative strategies must be explored. Purinergic co-transmission might be involved in sympathetic control of BAT and previous studies reported inhibitory effects of the purinergic transmitter adenosine in BAT from hamster or rat. However, the role of adenosine in human BAT is unknown. Here we show that adenosine activates human and murine brown adipocytes at low nanomolar concentrations. Adenosine is released in BAT during stimulation of sympathetic nerves as well as from brown adipocytes. The adenosine A2A receptor is the most abundant adenosine receptor in human and murine BAT. Pharmacological blockade or genetic loss of A2A receptors in mice causes a decrease in BAT-dependent thermogenesis, whereas treatment with A2A agonists significantly increases energy expenditure. Moreover, pharmacological stimulation of A2A receptors or injection of lentiviral vectors expressing the A2A receptor into white fat induces brown-like cells-so-called beige adipocytes. Importantly, mice fed a high-fat diet and treated with an A2A agonist are leaner with improved glucose tolerance. Taken together, our results demonstrate that adenosine-A2A signalling plays an unexpected physiological role in sympathetic BAT activation and protects mice from diet-induced obesity. Those findings reveal new possibilities for developing novel obesity therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.