Microchannel heat sinks are capable of removing dense heat loads from high-power electronic devices with low thermal resistance, but suffer from high pressure drops due to the small channel dimensions. Features that reduce the pressure drop, such as manifolds, increase fabrication complexity and are constrained by traditional subtractive manufacturing approaches. Additive manufacturing technologies offer improved design freedom and reduced geometric restrictions, expanding the types of features that can be produced and integrated into a heat sink. In this work, a novel permeable membrane microchannel (PMM) heat sink geometry is proposed and fabricated using direct metal laser sintering (DMLS) of an aluminum alloy (AlSi10Mg). In this PMM design, the cooling fluid is forced through thin, porous walls that act as both conducting fins and membranes that allow flow through their fine internal flow features for efficient heat exchange. The design leverages the ability of this fabrication process to incorporate complex, arbitrarily curved structures having internal porosity to enhance heat transfer and reduce pressure drop across the heat sink. The PMM heat sink geometry is benchmarked against a low-pressure-drop manifold microchannel (MMC) heat sink. A reduced-order model is used to explore the relative performance trends between the designs. Both heat sinks are experimentally characterized at flow rates of 50-500 mL/min using deionized water as the working fluid. At a constant pumping power of 0.018 W, the permeable membrane microchannel design offers both lower thermal resistance (17% reduction) and lower pressure drop (28% reduction) compared to the manifold microchannel heat sink.
Microchannel heat sinks allow removal of dense heat loads from high-power electronic devices at modest chip temperature rises. Such heat sinks are produced primarily using conventional subtractive machining techniques or anisotropic chemical etching, which restricts the geometric features that can be produced. Owing to their layer-by-layer and direct-write approaches, additive manufacturing (AM) technologies enable more design-driven construction flexibility and offer improved geometric freedom. Various AM processes and materials are available, but their capability to produce features desirable for microchannel heat sinks has received limited assessment. Following a survey of commercially mature AM techniques, direct metal laser sintering (DMLS) was used in this work to produce both straight and manifold microchannel designs with hydraulic diameters of 500 µm in an aluminum alloy (AlSi10Mg). Thermal and hydraulic performance were characterized over a range of mass fluxes from 500 kg/m 2 s to 2000 kg/m 2 s using water as the working fluid. The straight microchannel design allows these experimental results to be directly compared against widely accepted correlations from the literature. The manifold design demonstrates a more complex geometry that offers a reduced pressure drop. A comparison of the measured and predicted performance confirms that the nominal geometry is reproduced accurately enough to predict pressure drop based on conventional hydrodynamic theory, albeit with roughness-induced early transition to turbulence; however, the material properties are not known with sufficient accuracy to allow for a priori thermal design. New design guidelines are needed to exploit the benefits of additive manufacturing while avoiding undesired or unanticipated performance impacts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.