About 25% of high-grade cervical intraepithelial neoplasias (CIN2/3) caused by human papillomavirus serotype 16 (HPV16) undergo complete spontaneous regression. However, to date, therapeutic vaccination strategies for HPV disease have yielded limited success when measured by their ability to induce robust peripheral blood T cell responses to vaccine antigen. We report marked immunologic changes in the target lesion microenvironment after intramuscular therapeutic vaccination targeting HPV16 E6/E7 antigens, in subjects with CIN2/3 who had modest detectable responses in circulating T lymphocytes. Histologic and molecular changes, including markedly (average threefold) increased intensity of CD8+ T cell infiltrates in both the stromal and epithelial compartments, suggest an effector response to vaccination. Postvaccination cervical tissue immune infiltrates included organized tertiary lymphoid-like structures in the stroma subjacent to residual intraepithelial lesions and, unlike infiltrates in unvaccinated lesions, showed evidence of proliferation induced by recognition of cognate antigen. At a molecular level, these histologic changes in the stroma were characterized by increased expression of genes associated with immune activation (CXCR3) and effector function (Tbet and IFNβ), and were also associated with an immunologic signature in the overlying dysplastic epithelium. High-throughput T cell receptor sequencing of unmanipulated specimens identified clonal expansions in the tissue that were not readily detectable in peripheral blood. Together, these findings indicate that peripheral therapeutic vaccination to HPV antigens can induce a robust tissue-localized effector immune response, and that analyses of immune responses at sites of antigen are likely to be much more informative than analyses of cells that remain in the circulation.
BACKGROUND Androgen receptor (AR) transcriptional activity is modulated by cofactor proteins. They act as costimulators, corepressors, or bridging proteins, and a disbalanced expression may contribute to the altered activity of the AR in advanced prostate cancer. We investigated the expression of a series of steroid receptor cofactors in prostate cancer cell lines, including several LNCaP sublines, and in prostate stromal cells. METHODS Expression of cofactors was analyzed by means of RT‐PCR in PC‐3, Du‐145, LNCaP, three sublines of LNCaP established after long‐term androgen deprivation, and two strains of primary prostate stroma cells. Expression in LNCaP and LNCaP‐abl cells (which represented an advanced tumor cell) was analyzed employing semiquantitative RT‐PCR. RESULTS Ten of the 12 cofactors tested were expressed in all cells analyzed (AIB1, ARA54, ARA70, CBP, cyclin D1, Her2/neu/erbB2, BAG‐1/M/L, SRC‐1, SMRT, and TIF2). Only ARA55 and FHL2 mRNAs were not detected in all cells. ARA55 mRNA was absent in LNCaP cells, LNCaP sublines, and DU‐145 cells; FHL2 was not expressed in LNCaP cells and its derivatives. The expression pattern was identical in LNCaP cells, and the long‐term androgen ablated LNCaP sublines. Moreover, comparison of expression levels in LNCaP and LNCaP‐abl cells revealed a slight reduction in LNCaP‐abl cells but no gross differences. CONCLUSIONS Prostatic cells express a great number of steroid receptor cofactors. AR activity thus seems to be modulated in a very complex way in prostate cells. Prostate 45:124–131, 2000. © 2000 Wiley‐Liss, Inc.
BACKGROUND. Androgen receptor (AR) transcriptional activity is modulated by cofactor proteins. They act as costimulators, corepressors, or bridging proteins, and a disbalanced expression may contribute to the altered activity of the AR in advanced prostate cancer. We investigated the expression of a series of steroid receptor cofactors in prostate cancer cell lines, including several LNCaP sublines, and in prostate stromal cells. METHODS. Expression of cofactors was analyzed by means of RT-PCR in PC-3, Du-145, LNCaP, three sublines of LNCaP established after long-term androgen deprivation, and two strains of primary prostate stroma cells. Expression in LNCaP and LNCaP-abl cells (which represented an advanced tumor cell) was analyzed employing semiquantitative RT-PCR. RESULTS. Ten of the 12 cofactors tested were expressed in all cells analyzed (AIB1, ARA54, ARA70, CBP, cyclin D1, Her2/neu/erbB2, BAG-1/M/L, SRC-1, SMRT, and TIF2). Only ARA55 and FHL2 mRNAs were not detected in all cells. ARA55 mRNA was absent in LNCaP cells, LNCaP sublines, and DU-145 cells; FHL2 was not expressed in LNCaP cells and its derivatives. The expression pattern was identical in LNCaP cells, and the long-term androgen ablated LNCaP sublines. Moreover, comparison of expression levels in LNCaP and LNCaPabl cells revealed a slight reduction in LNCaP-abl cells but no gross differences. CONCLUSIONS. Prostatic cells express a great number of steroid receptor cofactors. AR activity thus seems to be modulated in a very complex way in prostate cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.