Biochemical analysis of organisms to assess exposure to environmental contaminants is of great potential use. Biochemical markers, specifically liver enzymes of the first and the second phase of xenobiotic transformation - cytochrome P450 (CYP 450), ethoxyresorufin-O-deethylase (EROD), glutathione-S-transferase (GST) and tripeptide reduced glutathione (GSH) - were used to assess contamination of the aquatic environment at 12 locations near the mouths of major rivers in the Czech Republic. These rivers were the Lužnice, Otava, Sázava, Berounka, Vltava, Labe, Ohře, Svratka, Dyje, Morava and Odra. The indicator species selected was the Chub (Leuciscus cephalus L.). The highest levels of CYP 450 and EROD catalytic activity were found in livers of fish from the Labe (Obříství; (0.32±0.10 nmol mg−1 protein and 1061.38±545.51 pmol min−1 mg−1 protein, respectively). The highest levels of GST catalytic activity and GSH content were found in fish from the Otava (35.39±13.35 nmol min−1 mg−1 protein and 4.29±2.10 nmol GSH mg−1 protein, respectively). They were compared with levels of specific inductors of these biochemical markers in muscle. The results confirmed contamination of some river locations (Labe Obříství, Svratka;.
The need for assessment of aquatic ecosystem contamination and of its impact on water dwelling organisms was developed in response to rising aquatic environmental pollution. In this field study, liver enzymes of phase I and phase II of xenobiotic transformation, namely cytochrome P450, ethoxyresorufin-O-deethylase, glutathione-S-transferase and tripeptide glutathione were used to assess the contamination of the aquatic environment at different rivers in the Czech Republic. The indicator species selected was the male chub (Leuciscus cephalus L.) and male brown trout (Salmo trutta fario). Chemical analyses included also the assessment of the most important inductors of previously mentioned biochemical markers. The major inductors of monitored biomarkers are industrial contaminants which belong to a large group of organic pollutants (PCB, PAH, PCDD/F, DDT, HCH, HCB and OCS), persistent in the environment. Four different groups of river basins were assessed: the River Tichá Orlice and its tributary the Kralický brook; important tributaries of the River Elbe (the rivers Orlice, Chrudimka, Cidlina, Jizera, Vltava, Ohře and Bílina); major rivers in the Czech Republic (the rivers Lužnice, Otava, Sázava, Berounka, Vltava, Labe, Ohře, Svratka, Dyje, Morava and Odra) and the River Vltava. The use of the biochemical markers together with chemical analyses seems to be an effective way to monitor the quality of aquatic environment.
In this study, selected biochemical markers -cytochrome P450 (CYP 450), ethoxyresorufin-O-deethylase (EROD), glutathione S-transferase (GST) and glutathione (GSH) -were measured in chub (Leuciscus cephalus L.) liver samples obtained from three locations on the Vltava river (Podolí, Podbaba and Vraňany) and from a control location nmicals commonly known as their inducers. These include polychlorinated biphenyls, hexachlorobenzene and octachlorostyrene measured in chub muscle and polyaromatic hydrocarbons measured in bear Vodňany. The levels of selected biomarkers should correlate with the concentration of cheottom sediments obtained from the same locations. The highest EROD activity (median 101.37 pmol·min -1 ·mg -1 protein), GST activity (median 42.82 nmol·min -1 ·mg -1 protein), and GSH concentration (median 8.01 nmol·mg -1 protein) were found in fish liver from the Podbaba location. There were no significant differences in CYP P450 level or EROD activity among the different locations. In Podbaba, GST activity (P < 0.01) and GSH concentrations (P < 0.001) were significantly higher than in the control location. The results of these analyses were correlated and a significant correlation was found between biochemical markers and their inducers. The results show that the use of biochemical markers in water quality assessment is a convenient method that can supplement classical chemical monitoring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.