This paper presents the analysis of the behavior of welded joints made of 9–12% Cr-Mo steel SA-387 Gr. 91. The successful application of this steel depends not only on the base metal’s (BM) properties but even more on heat-affected-zone (HAZ) and weld metal (WM), both at room and at operating temperature. Impact testing of specimens with a notch in BM, HAZ, and WM was performed on a Charpy instrumented pendulum to enable the separation of the total energy in crack-initiation and crack-propagation energy. Fracture toughness was also determined for all three zones, applying standard procedure at both temperatures. Results are analyzed to obtain a deep insight into steel SA 387 Gr. 91’s crack resistance properties at room and operating temperatures. Results are also compared with results obtained previously for A-387 Gr. B to assess the effect of an increased content of Chromium.
ABSTRACT. The influence of exploitation period and temperature on the fatigue crack growth parameters in different regions of a welded joint is analysed for new and exploited low-alloyed Cr-Mo steel A-387 Gr. B. The parent metal is a part of a reactor mantle which was exploited for over 40 years, and recently replaced with new material. Fatigue crack growth parameters, threshold value K th , coefficient C and exponent m, have been determined, both at room and exploitation temperature. Based on testing results, fatigue crack growth resistance in different regions of welded joint is analysed in order to justify the selected welding procedure specification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.