A micellar electrokinetic chromatographic method using UV and (UV)LIF detection in-line was developed for the determination of aromatic constituents, mainly allylbenzenes in essential oils. The method optimization included the optimization of the composition of the separation electrolyte using ACN and urea to reduce retention factors and CaCl(2) to widen the migration time window. In addition, it was necessary to optimize the composition of the sample solution which included the addition of a neutral surfactant at high concentration. With the optimized method, the determination of minor constituents in essential oils was possible despite of the presence of a structurally related compound being in a molar ratio excess of 1000:1. The use of UV and LIF-detection in-line enabled the direct comparison of the two detection traces using an electrophoretic mobility x-axis instead of the normal time-based scale. This simplifies the assignment of signals and enhances repeatability. The method developed was successfully applied to the determination of minor and major constituents in herbal essential oils, some of them being forensically relevant as sources of precursors for synthetic drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.