Human brain performs remarkably well in segregating a particular speaker from interfering ones in a multispeaker scenario. We can quantitatively evaluate the segregation capability by modeling a relationship between the speech signals present in an auditory scene, and the listener's cortical signals measured using electroencephalography (EEG). This has opened up avenues to integrate neuro-feedback into hearing aids where the device can infer user's attention and enhance the attended speaker. Commonly used algorithms to infer the auditory attention are based on linear systems theory where cues such as speech envelopes are mapped on to the EEG signals. Here, we present a joint convolutional neural network (CNN)—long short-term memory (LSTM) model to infer the auditory attention. Our joint CNN-LSTM model takes the EEG signals and the spectrogram of the multiple speakers as inputs and classifies the attention to one of the speakers. We evaluated the reliability of our network using three different datasets comprising of 61 subjects, where each subject undertook a dual-speaker experiment. The three datasets analyzed corresponded to speech stimuli presented in three different languages namely German, Danish, and Dutch. Using the proposed joint CNN-LSTM model, we obtained a median decoding accuracy of 77.2% at a trial duration of 3 s. Furthermore, we evaluated the amount of sparsity that the model can tolerate by means of magnitude pruning and found a tolerance of up to 50% sparsity without substantial loss of decoding accuracy.
ObjectiveUnderstanding speech in noisy conditions is challenging even for people with mild hearing loss, and intelligibility for an individual person is usually evaluated by using several subjective test methods. In the last few years, a method has been developed to determine a temporal response function (TRF) between speech envelope and simultaneous electroencephalographic (EEG) measurements. By using this TRF it is possible to predict the EEG signal for any speech signal. Recent studies have suggested that the accuracy of this prediction varies with the level of noise added to the speech signal and can predict objectively the individual speech intelligibility. Here we assess the variations of the TRF itself when it is calculated for measurements with different signal-to-noise ratios and apply these variations to predict speech intelligibility.MethodsFor 18 normal hearing subjects the individual threshold of 50% speech intelligibility was determined by using a speech in noise test. Additionally, subjects listened passively to speech material of the speech in noise test at different signal-to-noise ratios close to individual threshold of 50% speech intelligibility while an EEG was recorded. Afterwards the shape of TRFs for each signal-to-noise ratio and subject were compared with the derived intelligibility.ResultsThe strongest effect of variations in stimulus signal-to-noise ratio on the TRF shape occurred close to 100 ms after the stimulus presentation, and was located in the left central scalp region. The investigated variations in TRF morphology showed a strong correlation with speech intelligibility, and we were able to predict the individual threshold of 50% speech intelligibility with a mean deviation of less then 1.5 dB.ConclusionThe intelligibility of speech in noise can be predicted by analyzing the shape of the TRF derived from different stimulus signal-to-noise ratios. Because TRFs are interpretable, in a manner similar to auditory evoked potentials, this method offers new options for clinical diagnostics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.