Decoration of nitrogen vacancies by oxygen atoms has been studied by near-edge X-ray absorption fine structure (NEXAFS) around B K-edge in several boron nitride (BN) structures, including bamboo-like and multi-walled BN nanotubes. Breaking of B-N bonds and formation of nitrogen vacancies under low-energy ion bombardment reduces oxidation resistance of BN structures and promotes an efficient oxygen-healing mechanism, in full agreement with some recent theoretical predictions. The formation of mixed O-B-N and B-O bonds is clearly identified by well-resolved peaks in NEXAFS spectra of excited boron atoms.
We have studied the electronic structure of nitinol exposed to low-energy oxygen-ion bombardment, using x-ray photoemission spectroscopy (XPS) and near-edge x-ray absorption fine structure (NEXAFS) spectroscopy. XPS spectra reveal a gradual transformation of nitinol surfaces into TiO2 with increased dose of implanted oxygen. No oxidation of Ni atoms has been detected. NEXAFS spectra around O K-edge and Ti L2,3-edge, reflecting the element-specific partial density of empty electronic states, exhibit features, which can be attributed to the creation of molecular orbitals, crystal field splitting, and the absence of long-range order, characteristic of the amorphous TiO2. Based on these results, we discuss the oxidation kinetics of nitinol under low-energy oxygen-ion bombardment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.