Currently existing tubular transportation systems for the extraction of large tissue masses during Minimal Invasive Surgery (MIS) are subjected to a large amount of operating limitations. In this study, a novel transportation mechanism (patented) was developed inspired by the egg-laying structure of wasps. The developed mechanism consists of an outer tube within which six reciprocating semi-cylindrical blades are present and tissue is transported using a friction differential between the blades. Two motion sequences were developed: (1) 1-5 motion sequence, in which one blade moves forward, while the remaining five blades move backward and (2) 2-4 motion sequence, in which four blades move backward while two blades move forward. A proof-ofprinciple experiment was performed to investigate the effects of tissue elasticity, tissue heterogeneity, and the motion sequence on the transportation rate [mg/s], transportation efficiency [%], and transportation reliability [%]. The mean transportation rate and reliability was highest for the 9 wt% gelatine phantoms at 4.21 ± 0.74 mg/s and the 1-5 sequence at 100%, respectively. The prototype has shown that the friction-based transportation principle has the potential of becoming a viable and reliable alternative to aspiration as a transportation method within MIS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.