We prove that when assuming suitable non-degeneracy conditions equivariant harmonic maps into symmetric spaces of non-compact type depend in a real analytic fashion on the representation they are associated to. The main tool in the proof is the construction of a family of deformation maps which are used to transform equivariant harmonic maps into maps mapping into a fixed target space so that a real analytic version of the results in [EL81] can be applied.
Statement of the resultsWe first collect some preliminary definitions and results needed to give a statement of the main theorem.
Harmonic mapsIf (M, g) and (N, h) are Riemannian manifolds with M compact then a C 1 map f : (M, g) → (N, h) is called harmonic if it is a critical point of the
We consider harmonic maps into symmetric spaces of non-compact type that are equivariant for representations that induce a free and proper action on the symmetric space. We show that under suitable non-degeneracy conditions such equivariant harmonic maps depend in a real analytic fashion on the representation they are associated to. The main tool in the proof is the construction of a family of deformation maps which are used to transform equivariant harmonic maps into maps mapping into a fixed target space so that a real analytic version of the results in [4] can be applied.
We consider the harmonic heat flow for maps from a compact Riemannian manifold into a Riemannian manifold that is complete and of non-positive curvature. We prove that if the harmonic heat flow converges to a limiting harmonic map that is a non-degenerate critical point of the energy functional, then the rate of convergence is exponential (in the $$L^2$$
L
2
norm).
We consider the harmonic heat flow for maps from a compact Riemannian manifold into a Riemannian manifold that is complete and of non-positive curvature. We prove that if the harmonic heat flow converges to a limiting harmonic map that is a non-degenerate critical point of the energy functional, then the rate of convergence is exponential (in the L 2 norm).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.