In this work we present a novel computational method for embedding arbitrary curved one-dimensional (1D) fibers into three-dimensional (3D) solid volumes, as e.g. in fiber-reinforced materials. The fibers are explicitly modeled with highly efficient 1D geometrically exact beam finite elements, based on various types of geometrically nonlinear beam theories. The surrounding solid volume is modeled with 3D continuum (solid) elements. An embedded mortar-type approach is employed to enforce the kinematic coupling constraints between the beam elements and solid elements on non-matching meshes. This allows for very flexible mesh generation and simple material modeling procedures in the solid, since it can be discretized without having to account for the reinforcements, while still being able to capture complex nonlinear effects due to the embedded fibers. Several numerical examples demonstrate the consistency, robustness and accuracy of the proposed method, as well as its applicability to rather complex fiber-reinforced structures of practical relevance.
This work addresses research questions arising from the application of geometrically exact beam theory in the context of fluid-structure interaction (FSI). Geometrically exact beam theory has proven to be a computationally efficient way to model the behavior of slender structures while leading to rather well-posed problem descriptions. In particular, we propose a mixed-dimensional embedded finite element approach for the coupling of one-dimensional geometrically exact beam equations to a three-dimensional background fluid mesh, referred to as fluid–beam interaction (FBI) in analogy to the well-established notion of FSI. Here, the fluid is described by the incompressible isothermal Navier–Stokes equations for Newtonian fluids. In particular, we present algorithmic aspects regarding the solution of the resulting one-way coupling schemes and, through selected numerical examples, analyze their spatial convergence behavior as well as their suitability not only as stand-alone methods but also for an extension to a full two-way coupling scheme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.