Water-soluble CdTe quantum dots (QDs) and their conjugates with antibodies and antigenes were prepared by optimized procedures for applications in CE immunoassays. The QD size of 3.5 nm, excitation spectrum in the range of 300-500 nm, the maximum wavelength of the emission spectrum at 610 nm, quantum yield of 0.25 and luminescence lifetimes in the range of 3.6-43 ns were determined. The 0.1 M solution of TRIS/TAPS (pH 8.3) was found to be the optimum buffer for the separation of the antiovalbumin-ovalbumin immunocomplex from the free conjugates of QDs.
Progress achieved between 2014–2017 in the extraction and sample preparation of nucleic acid by isotachophoresis is reviewed in this paper. The isolation and purification of nucleic acids is very often compromised by a complex matrix such as blood and other bodily fluids, samples from the scene of crime, fossil samples, etc. While most of the common nucleic acids isolation techniques are based on extraction with inherent limitations with regard to quantitative results, isotachophoretic focusing is a quantitative process with a theoretically unlimited concentration factor. Since isotachophoresis belongs to less traditional approaches of nucleic acids purification, we present not only the latest developments in the application of isotachophoresis for the nucleic acids concentration but also a brief description of the principles of this method.
A number of biologically important molecules, such as DNA, proteins, and antibodies, are routinely conjugated with fluorescent tags for high-sensitivity analyses. Here, the application of quantum dots in the place of bright and size-tunable luminophores is studied. Several selected bioconjugation reactions via zero-length cross-linkers, long-chain linkers, and oriented methods for linking of quantum dots with proteins were tested. Anti-ovalbumin, anti-proliferating cell nuclear antigen, anti-hemagglutinin, and anti-CD3 membrane protein as model antibodies and annexin V were used as high-specificity selectors. The reaction yield and efficiency of the prepared immunoluminescent probes were tested by capillary zone electrophoresis with laser-induced fluorescence detection.
The number of charges and/or organic ligands covalently attached to the surface of CdTe quantum dot nanoparticles has been determined from their electrophoretic mobilities measured in capillaries filled with free electrolyte buffers. Three sizes of water soluble CdTe quantum dots with 3-mercaptopropionic and thioglycolic acids as surface ligands were prepared. Their electrophoretic mobilities in different pH and ionic strength values of separation buffers were measured by capillary electrophoresis with laser induced fluorescence detection. The ζ-potentials determined from electrophoretic mobilities using analytical solution of Henry function proposed by Ohshima were in the range from -30 to -100 mV. Charges of QDs were calculated from ζ-potentials. As a result, numbers of organic ligands bonded to QDs surface were determined to be 13, 14, and 15 for the sizes of 3.1, 3.5, and 3.9 nm, respectively. The dissociation constants of organic ligands bonded on QDs surfaces estimated from the dependence of QDs charge on pH of the separation buffer were 7.8 and 7.9 for 3-mercaptopropionic acid and 6.9 for thioglycolic acid.
We have developed a new separation device to concentrate and collect ions from several milliliter sample volumes to microliter fractions. Unlike most conventional platforms, this device has circular architecture. The electrophoretic migration operates from the outer perimeter toward the center. Separations can be performed both in continuous (zone electrophoresis) and discontinuous (moving boundary) electrolyte systems. We use a discontinuous electrolyte system comprising a leading and a terminating electrolyte to concentrate samples containing small organic anions and DNA fragment. The agarose gel stabilizes the boundary between the leading and terminating electrolytes. The milliliter volume sample is mixed with the terminating electrolyte and migrates through the gel toward the center. The concentrated total sample is collected in microliter fraction at the center. The potential for preparative concentration of DNA is demonstrated using a DNA ladder. Because zone migration accelerates as it moves toward the center, we named this method Epitachophoresis from the Greek word "επιταχυνω (epitachyńο)", meaning "acceleration". To the best of our knowledge, this unique circular architecture has not been previously described.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.