Alpha-difluoromethylornithine (DFMO) inhibits the protooncogene ornithine decarboxylase (ODC) and is known to induce cell cycle arrest. However, the effect of DFMO on human neuroblastoma (NB) cells and the exact mechanism of DFMO-induced cell death are largely unknown. Treatment with DFMO in combination with SAM486A, an S-adenosylmethionine decarboxylase (AdoMetDC) inhibitor, has been shown to enhance polyamine pool depletion. Therefore, we analysed the mechanism of action of DFMO and/or SAM486A in two established MYCN-amplified human NB cell lines. DFMO and SAM486A caused rapid cell growth inhibition, polyamine depletion, and G 1 cell cycle arrest without apoptosis in cell lines LAN-1 and NMB-7. These effects were enhanced with combined inhibitors and largely prevented by cotreatment with exogenous polyamines. The G 1 cell cycle arrest was concomitant with an increase in cyclin-dependent kinase inhibitor p27 Kip1 . In a similar fashion, DFMO and DFMO/SAM486A inhibited the phosphorylation of the G 1 /S transition-regulating retinoblastoma protein Rb at residues Ser795 and Ser807/811. Moreover, we observed a dramatic decrease in MYCN protein levels. Overexpression of MYCN induces an aggressive NB phenotype with malignant behavior. We show for the first time that DFMO and SAM486A induce G 1 cell cycle arrest in NB cells through p27 Kip1 and Rb hypophosphorylation.
SummaryThe proneural transcription factor Neurogenin3 (Ngn3) plays a critical role in pancreatic endocrine cell differentiation, although regulation of Ngn3 protein is largely unexplored. Here we demonstrate that Ngn3 protein undergoes cyclin-dependent kinase (Cdk)-mediated phosphorylation on multiple serine-proline sites. Replacing wild-type protein with a phosphomutant form of Ngn3 increases α cell generation, the earliest endocrine cell type to be formed in the developing pancreas. Moreover, un(der)phosphorylated Ngn3 maintains insulin expression in adult β cells in the presence of elevated c-Myc and enhances endocrine specification during ductal reprogramming. Mechanistically, preventing multi-site phosphorylation enhances both Ngn3 stability and DNA binding, promoting the increased expression of target genes that drive differentiation. Therefore, multi-site phosphorylation of Ngn3 controls its ability to promote pancreatic endocrine differentiation and to maintain β cell function in the presence of pro-proliferation cues and could be manipulated to promote and maintain endocrine differentiation in vitro and in vivo.
Spatiotemporal cytoskeleton remodeling is crucial for several biological processes. GAR22β interacts with EB1 via a novel noncanonical amino acid sequence and is pivotal for cell motility and focal adhesion turnover. GAR22β is also crucial for generation, motility, and ultrastructural organization of spermatozoa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.