Moderate maternal nutrient restriction during pregnancy occurs in both developing and developed countries. In addition to poverty, maternal dieting, teenage pregnancy, and uterine vascular problems in older mothers are causes of decreased fetal nutrition. We evaluated the impact of global 30% maternal nutrient reduction (MNR) on early fetal baboon brain maturation. MNR induced major cerebral developmental disturbances without fetal growth restriction or marked maternal weight reduction. Mechanisms evaluated included neurotrophic factor suppression, cell proliferation and cell death imbalance, impaired glial maturation and neuronal process formation, down-regulation of gene ontological pathways and related gene products, and up-regulated transcription of cerebral catabolism. Contrary to the known benefits from this degree of dietary reduction on life span, MNR in pregnancy compromises structural fetal cerebral development, potentially having an impact on brain function throughout life.oderate malnutrition during pregnancy is widespread in both developing and industrialized countries. Worldwide, 852 million people experienced food insecurity in 2004 (1) and 35-40% of children experience moderate malnutrition (2). In industrialized countries, maternal lifestyle, in which dieting (including global food reduction) is used for cosmetic reasons, is a common cause of moderate malnutrition. Recently, one study has shown that most women do not improve their dietary and lifestyle patterns in pregnancy (3). Decreased nutrient delivery to the fetus also occurs in teenage pregnancy (4) and during pregnancy in women over 35 y of age (5). Severe global reduction in nutrition during pregnancy has long been known to result in fetal growth restriction and to cause permanent brain dysfunction, especially cognitive and behavior deficits (6-10). In rodents, these deficits are accompanied by alterations of neuronal excitability as well as structural changes in the developing and adult brain (11,12). In contrast, effects of moderate maternal global reduction in nutrition on the fetus have been poorly examined. It is often assumed that moderate degrees of maternal nutrient reduction (MNR) are without unwanted consequences because it has generally been considered that the mother prioritizes fetal nutrient supply at the expense of her own needs, and brain growth is assumed to be spared from the other fetal effects of moderate decreases in fetal nutrient availability. This concept no longer appears to be tenable. Several rodent studies have demonstrated significant changes in fetal body and brain composition, often in the absence of major reduction of birth weight following poor maternal nutrition during pregnancy (11,12). In relation to the changes in brain development that we report here in a nonhuman primate species, evidence is accumulating that birth weight at the lower end of the normal range is associated with impaired higher mental function in later life (5,13,14).We addressed effects of 30% global moderate MNR on early fetal cereb...
Glucocorticoids have been used for 30 years to accelerate fetal lung maturation in human pregnancy at risk of preterm delivery. Exposure to inappropriate levels of steroid, however, leads to altered maturation of the cardiovascular, metabolic and central nervous systems. The effects of betamethasone on neuronal development and function were determined in the fetal baboon brain by examination of cytoskeletal microtubule associated proteins (MAPs) and the presynaptic marker protein synaptophysin. At 0.73 gestation, commencing 28 weeks of gestation, pregnant baboons received four doses of saline (n = 8) or 87.5 microg (kg body weight)(-1) betamethasone I.M. (n = 7) 12 h apart. This dose is equivalent to 12 mg betamethasone administered daily over two consecutive days to a 70 kg woman. Baboons underwent Caesarean section 12 h after the last injection. Paraffin sections of the fetal neocortex and the underlying white matter were labelled immunohistochemically against MAP1B, MAP2abc, MAP2ab and synaptophysin and stained histochemically with hematoxylin-eosin and silver. Tissue staining was quantified morphometrically. Betamethasone exposure resulted in decreased immunoreactivity (IR) of MAP1B by 34.3 % and MAP2abc by 34.1 % (P < 0.05). Loss of MAP2 IR was due to loss of IR of the juvenile isoform MAP2c (P < 0.05). MAP1B and MAP2c are involved in neuritogenesis and neuronal plasticity. Synaptophysin IR was reduced by 51.8 % (P < 0.01). These changes might reflect functional neuronal disturbances because they were not accompanied by an alteration of the density of neurofibrils or neuronal necrosis. These results are in agreement with earlier findings of alterations of cytoskeletal proteins and presynaptic terminals in the fetal sheep brain after betamethasone infusion directly to the fetus and support a common effect of inappropriate fetal exposure to glucocorticoids on neuronal cytoskeleton and synapses in mammalian species.
Betamethasone-induced delayed cerebral myelination is dependent on the stage of brain development in sheep. Betamethasone-related disturbances in myelination and any potential contribution to childhood behavior deficits need to be confirmed in clinical studies.
We validated laser Doppler flowmetry (LDF) for long-term monitoring and detection of acute changes of local cerebral blood flow (lCBF) in chronically instrumented fetal sheep. Using LDF, we estimated developmental changes of cerebral autoregulation. Single fibre laser probes (0.4 mm in diameter) were implanted in and surface probes were placed on the parietal cerebral cortex at 105 ± 2 (n = 7) and 120 ± 2 days gestational age (dGA, n = 7). Basal lCBF was monitored over 5 days followed by a hypercapnic challenge (fetal arterial partial pressure of CO 2 , P a,CO 2 : 83 ± 3 mmHg) during which lCBF changes obtained by LDF were compared to those obtained with coloured microspheres (CMSs). Mean arterial blood pressure (MABP) was increased and decreased using phenylephrine and sodium nitroprusside at 110 ± 2 and 128 ± 2 dGA. Intracortical and cortical surface laser probes gave stable measurements over 5 days. The lCBF increase during hypercapnia obtained by LDF correlated well with flows obtained using CMS (r = 0.89, P < 0.01). The signals of intracortical and surface laser probes also correlated well (r = 0.91, P < 0.01). Gliosis of 0.35 ± 0.06 mm around the tip of intracortical probes did not affect the measurements. The range of MABP over which cerebral autoregulation was observed increased from 20-48 mmHg at 110 dGA to 35 to > 95 mmHg at 128 dGA (P < 0.05). Since MABP increased from 33 to 54 mmHg over this period (P < 0.01), the range between the lower limit of cerebral autoregulation and the MABP increased from 13 mmHg at 110 dGA to 19 mmHg at 128 dGA (P < 0.01). LDF is a reliable tool to assess dynamic changes in cerebral perfusion continuously in fetal sheep.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.