For a given curve X and divisor class C, we give lower bounds on the degree of a divisor A such that A and A − C belong to specified semigroups of divisors. For suitable choices of the semigroups we obtain (1) lower bounds for the size of a party A that can recover the secret in an algebraic geometric linear secret sharing scheme with adversary threshold C, and (2) lower bounds for the support A of a codeword in a geometric Goppa code with designed minimum support C. Our bounds include and improve both the order bound and the floor bound. The bounds are illustrated for two-point codes on general
We show how to speed up the discrete log computations on curves having automorphisms of large order, thus generalizing the attacks on anomalous binary elliptic curves. This includes the first known attack on most of the hyperelliptic curves described in the literature.
Despite their exceptional error-correcting properties, Reed-Solomon (RS) codes have been overlooked in distributed storage applications due to the common belief that they have poor repair bandwidth: A naive repair approach would require the whole file to be reconstructed in order to recover a single erased codeword symbol. In a recent work, Guruswami and Wootters (STOC'16) proposed a single-erasure repair method for RS codes that achieves the optimal repair bandwidth amongst all linear encoding schemes. Their key idea is to recover the erased symbol by collecting a sufficiently large number of its traces, each of which can be constructed from a number of traces of other symbols. As all traces belong to a subfield of the defining field of the RS code and many of them are linearly dependent, the total repair bandwidth is significantly reduced compared to that of the naive repair scheme. We extend the trace collection technique to cope with multiple erasures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.