We examined the redox properties of the "carcinogenic" catechol and the "noncarcinogenic" hydroquinone in relation to different DNA damaging activities and carcinogenicity using 32P-labeled DNA fragments obtained from the human genes. In the presence of endogenous NADH and Cu2+, catechol induces stronger DNA damage than hydroquinone, although the magnitudes of their DNA damaging activities were reversed in the absence of NADH. In both cases, DNA damage resulted from base modification at guanine and thymine residues in addition to strand breakage induced by Cu+ and H2O2, generated during the oxidation of catechol and hydroquinone into 1,2-benzoquinone and 1,4-benzoquinone, respectively. EPR and 1H NMR studies indicated that 1,2-benzoquinone is converted directly into catechol through a nonenzymatic two-electron reduction by NADH whereas 1,4-benzoquinone is reduced into hydroquinone through a semiquinone radical intermediate through two cycles of one-electron reduction. The reduction of 1,2-benzoquinone by NADH proceeds more rapidly than that of 1,4-benzoquinone. This study demonstrates that the rapid 1,2-benzoquinone two-electron reduction accelerates the redox reaction turnover between catechol and 1,2-benzoquinone, resulting in the enhancement of DNA damage. These results suggest that the differences in NADH-mediated redox properties of catechol and hydroquinone contribute to their different carcinogenicities.
Catechol, a naturally occurring and an important industrial chemical, has been shown to have strong promotion activity and induce glandular stomach tumors in rodents. In addition, catechol is a major metabolite of carcinogenic benzene. To clarify the carcinogenic mechanism of catechol, we investigated DNA damage using human cultured cell lines and 32P-labeled DNA fragments obtained from the human p53 and p16 tumor suppressor genes and the c-Ha-ras-1 proto-oncogene. Catechol increased the amount of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), which is known to be correlated with the incidence of cancer, in a human leukemia cell line HL-60, whereas the amount of 8-oxodG in its hydrogen peroxide (H2O2)-resistant clone HP100 was not increased. The formation of 8-oxodG in calf thymus DNA was increased by catechol in the presence of Cu(2+). Catechol caused damage to 32P-labeled DNA fragments in the presence of Cu(2+). When NADH was added, DNA damage was markedly enhanced and clearly observed at relatively low concentrations of catechol (<1 microM). DNA cleavage was enhanced by piperidine treatment, suggesting that catechol plus NADH caused not only deoxyribose phosphate backbone breakage but also base modification. Catechol plus NADH frequently modified thymine residues. Bathocuproine, a specific Cu(+) chelator and catalase inhibited the DNA damage, indicating the participation of Cu(+) and H2O2 in DNA damage. Typical hydroxyl radical scavengers did not inhibit catechol plus Cu(2+)-induced DNA damage, whereas methional completely inhibited it. These results suggest that reactive species derived from the reaction of H2O2 with Cu(+) participates in catechol-induced DNA damage. Therefore, we conclude that oxidative DNA damage by catechol through the generation of H2O2 plays an important role in the carcinogenic process of catechol and benzene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.