Abstract5-Formylcytosine (5fC) is an epigenetic DNA modification introduced via TET protein-mediated oxidation of 5-methyl-dC. We recently reported that 5fC form reversible DNA–protein conjugates (DPCs) with histone proteins in living cells (Ji et al. (2017) Angew. Chem. Int. Ed., 56:14130–14134). We now examined the effects of 5fC mediated DPCs on DNA replication. Synthetic DNA duplexes containing site-specific DPCs between 5fC and lysine-containing proteins and peptides were subjected to primer extension experiments in the presence of human translesion synthesis DNA polymerases η and κ. We found that DPCs containing histones H2A or H4 completely inhibited DNA replication, but the replication block was removed when the proteins were subjected to proteolytic digestion. Cross-links to 11-mer or 31-mer peptides were bypassed by both polymerases in an error-prone manner, inducing targeted C→T transitions and –1 deletions. Similar types of mutations were observed when plasmids containing 5fC-peptide cross-links were replicated in human embryonic kidney (HEK) 293T cells. Molecular simulations of the 11-mer peptide-dC cross-links bound to human polymerases η and κ revealed that the peptide fits well on the DNA major groove side, and the modified dC forms a stable mismatch with incoming dATP via wobble base pairing in the polymerase active site.
DNA-protein cross-links (DPCs) are bulky DNA lesions that form both endogenously and following exposure to bis-electrophiles such as common antitumor agents. The structural and biological consequences of DPCs have not been fully elucidated due to the complexity of these adducts. The most common site of DPC formation in DNA following treatment with bis-electrophiles such as nitrogen mustards and cisplatin is the N7 position of guanine, but the resulting conjugates are hydrolytically labile and thus are not suitable for structural and biological studies. In this report, hydrolytically stable structural mimics of N7-guanine-conjugated DPCs were generated by reductive amination reactions between the Lys and Arg side chains of proteins/peptides and aldehyde groups linked to 7-deazaguanine residues in DNA. These model DPCs were subjected to in vitro replication in the presence of human translesion synthesis DNA polymerases. DPCs containing full-length proteins (11-28 kDa) or a 23-mer peptide blocked human polymerases and . DPC conjugates to a 10-mer peptide were bypassed with nucleotide insertion efficiency 50 -100-fold lower than for native G. Both human polymerase (hPol) and hPol inserted the correct base (C) opposite the 10-mer peptide cross-link, although small amounts of T were added by hPol . Molecular dynamics simulation of an hPol ternary complex containing a template-primer DNA with dCTP opposite the 10-mer peptide DPC revealed that this bulky lesion can be accommodated in the polymerase active site by aligning with the major groove of the adducted DNA within the ternary complex of polymerase and dCTP.
In the canonical (G-X-Y)n sequence of the fibrillar collagen triple helix, stabilizing direct inter-chain hydrogen bonding connects neighboring chains. Mutations at G can disrupt these interactions and are linked to connective tissue diseases. Here we integrate computational approaches with NMR to obtain a dynamic view of hydrogen bonding distributions in the (POG)4-(POA)-(POG)5 peptide, showing that the solution conformation, dynamics and hydrogen bonding deviate from the reported x-ray crystal structure in many aspects. The simulations and NMR data provide clear evidence for inequivalent environments in the three chains. MD simulations indicate direct inter-chain hydrogen bonds in the leading chain, water-bridges in the middle chain, and non-bridging waters in the trailing chain at the G→A substitution site. Theoretical calculations of NMR chemical shifts using a quantum fragmentation procedure can account for the unusual downfield NMR chemical shifts at the substitution sites and are used to assign the resonances to the individual chains. The NMR and MD data highlight the sensitivity of amide shifts to changes in the acceptor group from peptide carbonyls to water. The results are used to interpret solution NMR data for a variety of glycine substitutions and other sequence triplet interruptions, to provide new connections between collagen sequences, their associated structures, dynamical behavior and ability to recognize collagen receptors.
Histone tails in nucleosomes play critical roles in regulation of many biological processes including chromatin compaction, transcription and DNA repair. Moreover, post-translational modifications, notably lysine acetylation, are crucial to these functions. While the tails have been intensively studied, how the structures and dynamics of tails are impacted by the presence of a nearby bulky DNA lesion is a frontier research area, and how these properties are impacted by tail lysine acetylation remains unexplored. To obtain molecular insight, we have utilized all atom 3 μs molecular dynamics simulations of nucleosome core particles (NCPs) to determine the impact of a nearby DNA lesion, 10S (+)-trans-anti-B[a]P-N2-dG--the major adduct derived from the procarcinogen benzo[a]pyrene--on H2B tail behavior in unacetylated and acetylated states. We similarly studied lesion-free NCPs to investigate the normal properties of the H2B tail in both states. In the lesion-free NCPs, the charge-neutralization upon lysine acetylation causes release of the tail from the DNA. When the lesion is present, it stably engulfs part of the nearby tail, impairing the interactions between DNA and tail. With the tail in an acetylated state, the lesion still interacts with part of it, although unstably. The lesion’s partial entrapment of the tail should hinder the tail from interacting with other nucleosomes, and other proteins such as acetylases, deacetylases and acetyl-lysine binding proteins, and thus disrupt critical tail-governed processes. Hence, the lesion would impede tail functions modulated by acetylation or deacetylation, causing aberrant chromatin structures and impaired biological transactions such as transcription and DNA repair.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.