To elucidate how unusually large von Willebrand factor (UL-VWF) multimers facilitate thrombus formation, their behavior was analyzed together with that of platelets in living mice deficient in the gene encoding the protease that cleaves UL-VWF, a disintegrin-like and metalloprotease with thrombospondin type 1 motif 13 (ADAMTS13-/-). By crossing ADAMTS13-/- mice with green fluorescent protein-expressing transgenic mice (GFP mice), GFP-ADAMTS13-/- mice were obtained. The dynamics of GFP-expressing platelets were monitored employing intravital confocal fluorescent microscopy. Administration of a vasopressin derivative, DDAVP, a secretagogue of VWF increased the number of platelets adhered to vascular endothelial cells (VECs) on mesentery at sites recognized by an anti-VWF antibody. Some of these platelets were interconnected and aligned as beads on a string. They reached their maximum length at 5 min and were longer in GFP-ADAMTS13-/- mice than in GFP mice (5.3 ± 4.3, N = 6 vs 2.9 ± 2.1 μm, N = 4) (mean±SE). Focal injury of VECs by topical application of FeCl(3) developed longer (25, 3-50 vs 10, 2-25 μm, P < 0.01) (mean, 10th-90th percentile) and more stable (1.3, 0.3-6.3 vs 0.3, 0.2-1.3 s, P < 0.01) connected platelets in GFP-ADAMTS13-/- mice than in GFP mice. This study revealed that ADAMTS13 cleaves platelet-bound UL-VWF multimers, both during their secretion from VECs and after their adherence to injured vascular walls in veins. UL-VWF multimers either being secreted from VECs or circulating in plasma of ADAMTS13-/- mice appeared to facilitate the accumulation of longer and more stable VWF strings with more associated platelets on injured vascular walls.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.