Per- and polyfluoroalkyl substances (PFASs) are widely distributed across the world and are expected to be of concern to human health and the environment. The review focuses on perfluoroalkyl acids (PFAAs) and, in particular, on the most frequently discussed perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkane sulfonic acids (PFSAs). In this study, some basic information concerning PFASs is reviewed, focusing mainly on PFAAs (perfluoroalkyl acids). We have made efforts to systemize their division into groups according to chemical structure, describe their basic physicochemical properties, characterize production technologies, and determine potential human exposure routes with particular reference to oral exposure. A variety of possible toxicological effects to human health are also discussed. In response to increasing public concern about the toxicity of PFAAs, an evaluation of dietary intake has been undertaken for two of the most commonly known PFAAs: perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS). As summarized in this study, PFAAs levels need further assessment due to the science-based TWI standards laid down by the EFSA’s CONTAM Panel regarding the risk to human health posed by the presence of perfluorooctane sulfonic acid and perfluorooctanoic acid in food (tolerable weekly intakes of PFOA and PFOS set up to 6 ng·kg−1·bw·week−1 and 13 ng·kg−1·bw·week−1, respectively). Current legislation, relevant legislation on PFAAs levels in food, and the most popular methods of analysis in food matrices are described.
The aim of this research was to modify the Quick, Easy, Cheap, Effective, Rugged and Safe (QuEChERS) method for the determination of organochlorine and organophosphate pesticides in fatty animal matrices such as fish muscle tissues of carp and sturgeon collected from Carp Valley, Lesser Poland. Pesticides extraction effectiveness was evaluated at 0.030 mg kg(-1) spiking level and efficiency of the dispersive-solid-phase extraction (d-SPE) clean-up step was evaluated by comparison testing two different d-SPE clean-up stages, first the addition of the d-SPE sorbent combination (PSA + SAX + NH2), and secondly the addition of C18 after extracts enrichment with the d-SPE sorbent combination (PSA + SAX + NH2), introducing a novel concept of clean-up named dual-d-SPE clean-up. Analysis of pesticide residues was performed by Gas Chromatography Quadrupole Mass Spectrometry (GC/Q-MS) working in selected-ion monitoring (SIM) mode. Linear relation was observed from 0 to 200 ng mL(-1) and determination coefficient R(2) > 0.997 in all instances for all target analytes. Better recoveries and cleanliness of extracts in both samples, carp and sturgeon tissues, were obtained after C18 addition during the dual-d-SPE clean-up step. Recoveries were in the range 70-120%, with relative standard deviation lower than 10% at 0.030 mg kg(-1) spiking level for most pesticides. LODs ranged 0.001-0.003 mg kg(-1), while LOQs ranged 0.004-0.009 mg kg(-1). The proposed method was successfully applied analyzing pesticide residues in real carp and sturgeon muscle samples; detectable pesticide residues were observed, but in all of the cases contamination level was lower than the default maximum residue levels (MRLs) set by the European Union (EU), Regulation (EC) N 396/2005.
Introduction and objective. Acrylamide (AA) is a carcinogenic and genotoxic food contaminant occurring in carbohydraterich foods produced at high cooking temperatures. The aim of the study was to determine the importance of AA exposure with respect to traditional food and to assess the associated risks. Materials and method. 165 food samples were collected from local markets in Lesser Poland. The participants enrolled in the study were 500 residents: (males-179, females-321) who had purchased food from local markets. Exposure of the participants to AA was assessed by combining the analytical AA results with data on the individual consumption of traditional foods. Risk assessment of AA exposure from traditional foods was estimated and the margin of exposure (MOE) values were calculated. Results. The highest mean AA level was measured in pretzels (92 µg kg −1), followed by bagels (74.81 µg kg −1) and pork paté (59.56 µg kg −1). The average and 95th percentile values of AA exposure were 0.213 and 0.458 [µg kg −1 body weight (BW) day −1 ]. The calculated values of MOE for the average [798 and 2,019 for both benchmark dose lower confidence limit (BMDL) 0.17 and 0.43 mg kg −1 BW day −1 ] and 95th percentile AA exposure values (371 and 939 for both BMDL 0.17and 0.43 mg kg −1 BW day −1) suggest that there is a health concern with respect to adult residents. Conclusions. The results of the study confirm the general recommendation to the consumers, especially certain population groups, to eat a balanced healthy diet and to limit the amount of baked cereal products and fried products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.