Introduction and objective. Acrylamide is a "probably human carcinogen" monomer that can form in heated starchy food as a result of a reaction between asparagine and reducing sugars via Maillard reaction. The main source of acrylamide in human diet are potato products, cereal products and coffee. Tobacco smoke may be another significant source of exposure to acrylamide. The aim of our study was to determine acrylamide content in cigarettes available on the Polish market and to estimate the exposure to acrylamide originating from tobacco smoke in smokers in Poland. Materials and methods. The material was cigarettes of the top five brands bought in Poland and tobacco from non-smoked cigarettes. Acrylamide content in cigarettes mainstream smoke was determined by LC-MS/MS. Exposure assessment was carried out using analytical data of acrylamide content in cigarettes and the mean quantity of cigarettes smoked daily by smokers in Poland, assuming body weight at 70 kg. Results. The mean content of acrylamide was 679.3 ng/cigarette (range: 455.0-822.5 ng/cigarette). The content of acrylamide was evidenced to correlate positively with total particulate matter (TPM) content in cigarettes. The estimated average exposure to acrylamide from tobacco smoke in adult smokers in Poland is 0.17 μg/kg b.w./day. Conclusions. Our results demonstrate that tobacco smoke is a significant source of acrylamide and total exposure to acrylamide in the population of smokers, on average, is higher by more than 50% in comparison with non-smokers. Our estimation of exposure to acrylamide from tobacco smoke is the first estimation taking into account the actual determined acrylamide content in the cigarettes available on the market.
We determined metabolites of acrylamide and glycidamide concentrations (AAMA and GAMA, respectively) in urine of 93 women within the first days after delivery, using LC-MS/MS. The median AAMA and GAMA levels in urine were 20.9 μg/l (2.3÷399.0 μg/l) and 8.6 μg/l (1.3÷85.0 μg/l), respectively. In smokers we found significantly (P<0.01) higher levels of metabolites in comparison with the non-smoking women. As demonstrated by the 24-h dietary recall, acrylamide intake was low (median: 7.04 μg/day). Estimated exposure to acrylamide based on AAMA and GAMA levels in the whole group of women was 0.16 μg/kg b.w./day (1.15 μg/kg b.w./day, P95). We found significantly (P<0.05) higher exposure in women who consumed higher amount of acrylamide in the diet (≥10 μg/day vs <10 μg/day). A weak but significant positive correlation between acrylamide intake calculated on the basis of urinary levels of AAMA and GAMA and estimated on the basis of 24-h dietary recall (r=0.26, P<0.05) was found. The estimated margin of exposure values were below 10 000 and ranged from 156 for 95th percentile to 1938 for median acrylamide intake. Our results have shown that even a low dietary acrylamide intake may be associated with health risk.
Acrylamide in food is formed by the Maillard reaction. Numerous studies have shown that acrylamide is a neurotoxic and carcinogenic compound. The aim of this study was to determine the level of acrylamide in breast milk at different lactation stages and to evaluate the impact of breastfeeding women’s diet on the content of this compound in breast milk. The acrylamide level in breast milk samples was determined by LC–MS/MS. Breastfeeding women’s diet was evaluated based on the 24 h dietary recall. The median acrylamide level in colostrum (n = 47) was significantly (p < 0.0005) lower than in the mature milk (n = 26)—0.05 µg/L and 0.14 µg/L, respectively. The estimated breastfeeding women’s acrylamide intake from the hospital diet was significantly (p < 0.0001) lower than that from the home diet. We found positive—although modest and borderline significant—correlation between acrylamide intake by breastfeeding women from the hospital diet µg/day) and acrylamide level in the colostrum (µg/L). Acrylamide has been detected in human milk samples, and a positive correlation between dietary acrylamide intake by breastfeeding women and its content in breast milk was observed, which suggests that the concentration can be reduced. Breastfeeding women should avoid foods that may be a source of acrylamide in their diet.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.