There is considerable interest in therapeutic transfer of regulatory T cells (Tregs) for controlling aberrant immune responses. Initial clinical trials have shown the safety of Tregs in hematopoietic stem cell transplant recipients and subjects with juvenile diabetes. Our hypothesis is that infusion(s) of Tregs may induce transplant tolerance thus avoiding long-term use of toxic immunosuppressive agents that cause increased morbidity/mortality. Towards testing our hypothesis, we conducted a phase I dose escalation safety trial infusing billions of ex vivo expanded recipient polyclonal Tregs into living donor kidney transplant recipients. Despite variability in recipient’s renal disease, our expansion protocol produced Tregs which met all release criteria, expressing >98% CD4+CD25+ with <1% CD8+ and CD19+ contamination. Our product displayed >80% FOXP3 expression with stable demethylation in the FOXP3 promoter. Functionally, expanded Tregs potently suppressed allogeneic responses and induced the generation of new Tregs in the recipient’s allo-responders in vitro. Within recipients, expanded Tregs amplified circulating Treg levels in a sustained manner. Clinically, all doses of Treg therapy tested were safe with no adverse infusion related side effects, infections or rejection events up to two years post-transplant. This study provides the necessary safety data to advance Treg cell therapy to phase II efficacy trials.
Urease is a virulence factor found in various pathogenic bacteria. It is essential in colonization of a host organism and in maintenance of bacterial cells in tissues. Due to its enzymatic activity, urease has a toxic effect on human cells. The presence of ureolytic activity is an important marker of a number of bacterial infections. Urease is also an immunogenic protein and is recognized by antibodies present in human sera. The presence of such antibodies is connected with progress of several long-lasting diseases, like rheumatoid arthritis, atherosclerosis or urinary tract infections. In bacterial ureases, motives with a sequence and/or structure similar to human proteins may occur. This phenomenon, known as molecular mimicry, leads to the appearance of autoantibodies, which take part in host molecules destruction. Detection of antibodies-binding motives (epitopes) in bacterial proteins is a complex process. However, organic chemistry tools, such as synthetic peptide libraries, are helpful in both, epitope mapping as well as in serologic investigations. In this review, we present a synthetic report on a molecular organization of bacterial ureases - genetic as well as structural. We characterize methods used in detecting urease and ureolytic activity, including techniques applied in disease diagnostic processes and in chemical synthesis of urease epitopes. The review also provides a summary of knowledge about a toxic effect of bacterial ureases on human body and about occurrence of anti-urease antibodies in long-lasting diseases.
The interferon consensus sequence binding protein (ICSBP) is an interferon regulatory transcription factor, also referred to as IRF8. ICSBP acts as a suppressor of myeloid leukemia, although few target genes explaining this effect have been identified. In the current studies, we identified the gene encoding growth arrest specific 2 (GAS2) as an ICSBP target gene relevant to leukemia suppression. We find that ICSBP, Tel, and histone deacetylase 3 (HDAC3) bind to a cis element in the GAS2 promoter and repress transcription in myeloid progenitor cells. Gas2 inhibits calpain protease activity, and -catenin is a calpain substrate in these cells. Consistent with this, ICSBP decreases -catenin protein and activity in a Gas2-and calpain-dependent manner. Conversely, decreased ICSBP expression increases -catenin protein and activity by the same mechanism. This is of interest, because decreased ICSBP expression and increased -catenin activity are associated with poor prognosis and blast crisis in chronic myeloid leukemia (CML). We find that the expression of Bcr/abl (the CML oncoprotein) increases Gas2 expression in an ICSBP-dependent manner. This results in decreased calpain activity and a consequent increase in -catenin activity in Bcr/abl-positive (Bcr/abl ؉ ) cells. Therefore, these studies have identified a Gas2/calpain-dependent mechanism by which ICSBP influences -catenin activity in myeloid leukemia.
Nineteen subjects have more than 18 months' follow-up in a phase IIb tolerance protocol in HLA-mismatched recipients of living donor kidney plus facilitating cell enriched hematopoietic stem cell allografts (FCRx). Reduced intensity conditioning preceded a kidney allograft, followed the next day by FCRx. Twelve have achieved stable donor chimerism and have been successfully taken off immunosuppression (IS). We prospectively evaluated immune reconstitution and immunocompetence. Return of CD4 and CD8 T central and effector memory cell populations was rapid. T-cell receptor (TCR) Excision Circle analysis showed a significant proportion of chimeric cells produced were being produced de novo. The TCR repertoires posttransplant in chimeric subjects were nearly as diverse as pretransplant donors and recipients, and were comparable to subjects with transient chimerism who underwent autologous reconstitution. Subjects with persistent chimerism developed few serious infections when off IS. The majority of infectious complications occurred while subjects were still on conventional IS. BK viruria and viremia resolved after cessation of IS and no tissue-invasive cytomegalovirus infections occurred. Notably, although 2 of 4 transiently or nonchimeric subjects experienced recurrence of their underlying autoimmune disorders, none of the chimeric subjects have, suggesting that self-tolerance is induced in addition to tolerance to alloantigen. No persistently chimeric subject has developed donor-specific antibody, and renal function has remained within normal limits. Patients were successfully vaccinated per The American Society for Blood and Marrow Transplantation guidelines without loss of chimerism or rejection. Memory for hepatitis vaccination persisted after transplantation. Chimeric subjects generated immune responses to pneumococcal vaccine. These data suggest that immune reconstitution and immunocompetence are maintained in persistently chimeric subjects.
The homeodomain transcription factor HoxA10 is maximally expressed in myeloid progenitor cells. Sustained HoxA10 expression during differentiation has been described in poor prognosis human acute myeloid leukemia (AML). Consistent with this, engineered overexpression of HoxA10 in murine bone marrow induces a myeloproliferative disorder that progresses to AML over time. This murine model suggests that HoxA10 overexpression is sufficient for myeloproliferation but that differentiation block, and therefore AML, requires acquisition of additional mutations. In myeloid progenitor cells, HoxA10 represses transcription of genes that encode phagocyte effector proteins such as gp91 PHOX and p67 PHOX . Tyrosine phosphorylation of HoxA10 during myelopoiesis decreases binding to these target genes. In immature myeloid cells, HoxA10 also activates transcription of the DUSP4 gene that encodes Mkp2, an antiapoptotic protein. HoxA10 binding to the DUSP4 promoter decreases during myelopoiesis. Therefore, both myeloid-specific gene repression and DUSP4 activation by HoxA10 decrease during myelopoiesis. This results in phenotypic differentiation and facilitates apoptosis as differentiation proceeds. HoxA10 is de-phosphorylated by SHP2 protein-tyrosine phosphatase in myeloid progenitors. This mechanism maintains HoxA10 in a nonphosphorylated state in immature, but not differentiating, myeloid cells. Constitutively active SHP2 mutants have been described in human AML, which dephosphorylate HoxA10 throughout myelopoiesis. In this study, we hypothesize that constitutive SHP2 activation synergizes with HoxA10 overexpression to accelerate progression to AML. Because both HoxA10 overexpression and constitutive SHP2 activation are found in poor prognosis human AML, these studies contribute to understanding biochemical aspects of disease progression in myeloid malignancy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.