Introduction: The insertion (I allele) deletion (D allele) polymorphism of ACE gene (rs4646994) may influence the etiopathogenesis of multiple myeloma (MM). ACE gene is expressed in bone marrow cells and encodes angiotensin converting enzyme (ACE). It converts angiotensin I to active peptide angiotensin II, which stimulates proliferation of hematopoietic stem cells. This suggests possible association of ACE I/D gene polymorphism with MM. The aim of our study was to check possible impact of this polymorphism on risk of development and outcome of MM, as well as, sensitivity to bortezomib in cell cultures derived from MM patients.Objects and Methods: Genomic DNA from 98 newly diagnosed MM patients and 100 healthy blood donors were analyzed by PCR method. Chromosomal aberrations were detected by use of cIg-FISH. In a subgroup of 40 MM patients nucleated bone marrow cells were treated with bortezomib in vitro.Results: The Hardy-Weinberg equilibrium test showed that genotypic frequencies diverged significantly from the equilibrium. The differences between I and D allele frequencies in control and study population were significant (p = 0.046). We observed the association between DD genotype and more than 2-fold risk of MM - OR = 2.69; p < 0.0001. We did not detect any significant differences among studied genotypes regarding clinical and laboratory parameters. Moreover, we did not observe the association between survival of MM patients and I/D genotypes. Bortezomib increased number of apoptotic and necrotic cells, but the only statistically significant differences were observed in the number of viable cells at 1 nM between ID and DD genotypes (p = 0.026).Conclusion: Presented results confirmed the significant relationship between ACE (I/D) polymorphism and risk of MM development. We did not observe the association of ACE I/D polymorphism with disease outcome and bortezomib in vitro sensitivity.
Ginszt, M, Michalak-Wojnowska, M, Gawda, P, Wojcierowska-Litwin, M, Korszeń-Pilecka, I, Kusztelak, M, Muda, R, Filip, AA, and Majcher, P. ACTN3 genotype in professional sport climbers. J Strength Cond Res 32(5): 1311–1315, 2018—The functional RR genotype of the alpha-actinin-3 (ACTN3) gene has been reported to be associated with elite sprint/power athlete status. Although large and rapidly increasing number of studies have investigated the associations between the ACTN3 genotypes and athletic performance in various sport disciplines, there is a lack of studies on the genetic predisposition in sport climbing, which was selected to be part of the next Summer Olympic Games in Tokyo 2020 with three subdisciplines (“lead climbing,” “speed climbing,” and “bouldering”). The aim of the study is to determine the frequency distribution of ACTN3 genotypes and alleles in professional lead climbers and boulderers. 100 professional sport climbers from Poland, Russia, and Austria were divided into 2 equal groups: professional boulderers and professional lead climbers were involved in the study. ACTN3 allele frequencies and genotypes were compared with 100 sedentary controls. Genotypes were determined using polymerase chain reaction–restriction fragment length polymorphism method. The percent distribution of RR genotype in the boulderers was significantly higher than in lead climbers and controls (62 vs. 26%; 33%, respectively; χ2 = 17.230, p = 0.0017). The frequencies of ACTN3 R allele in boulderers differed significantly from lead climbers and controls (77 vs. 51%; 58%, respectively; χ2 = 15.721, p = 0.0004). The proportion of the ACTN3 RR genotype is significantly higher in boulderers than in lead climbers and may be related to the specific type of predisposition to this subdiscipline.
Oxidative stress and systemic inflammation are closely linked with increased risk of cancer development. Tumor necrosis factor alpha (TNF-α) is one of the pro-inflammatory cytokines. Glutathione S-transferases (GSTs) are enzymes involved in oxidative stress handling. Polymorphisms of genes encoding mentioned molecules may potentially influence the risk and the outcome in neoplastic diseases. Multiple myeloma (MM) is a hematological malignancy characterized by clonal, atypical plasma cell proliferation. In the present study we investigated the association of deletion polymorphisms in GSTT1/GSTM1 genes and single nucleotide polymorphisms (SNPs) in the TNF-α gene at positions −308/−238 with the risk and outcome in MM and sensitivity to bortezomib under in vitro conditions. One hundred newly diagnosed MM patients and 100 healthy blood donors were genotyped by means of multiplex PCR (for GSTs) and PCR-RFLP (for TNF-α). In a subgroup of 50 MM patients, bone marrow cells were treated with bortezomib in vitro. Patients with −238GA+AA or GSTT1-null genotypes had 2.0 (p = 0.002) or 2.29 (p = 0.013) fold increased risk of MM. The interaction effects and risk of MM were observed in GSTT1/GSTM1-null (OR = 2.82, p = 0.018), −308/−238GA+AA (OR = 5.63, p < 0.001), as well as in all combinations of −308 with GSTs. The −308/−238GA+AA genotypes in comparison to GG were associated with earlier MM onset−61.14 vs. 66.86 years (p = 0.009) and 61.72 vs. 66.52 years (p = 0.035), respectively. Patients with GSTM1-present had shorter progression-free-survival (15.17 vs. 26.81 months, p = 0.003) and overall-survival (22.79 vs. 34.81 months, p = 0.039) compared with GSTM1-null. We did not observe relationship between response rate and studied polymorphisms. The in vitro study revealed significantly higher number of apoptotic cells at 12 nM of bortezomib in GSTT1-present, GSTM1-null/present, −308GG and −238GG/GA+AA genotypes. Our findings comprise large analysis of studied polymorphisms in MM.
Introduction. Multiple myeloma (MM) is a hematological malignancy characterized by genetic variety. The 3020insC variant of the NOD2/CARD15 gene results in the upregulation of proinflammatory cytokines. Chronic inflammation and abnormal function of the proteasome system may lead to MM development. The polymorphism (-8C>G) in the PSMA6 gene affects proteasome activity. The aim of our study was to analyze the possible relationship of NOD/CARD15 and PSMA6 genes with the risk of development and outcome of MM, as well as the sensitivity to bortezomib (proteasome inhibitor) in cell cultures derived from MM patients. Objects and Methods. Genomic DNA from 100 newly diagnosed MM patients and 100 healthy blood donors was analyzed by methods such as PCR-RFLP (for PSMA6 genotyping) and automated DNA sequencing (for NOD2/CARD15 genotyping). In a subgroup of 50 MM patients, nucleated bone marrow cells were treated with bortezomib in vitro. Results. Patients with PSMA6 CG+GG genotypes had higher chances for progressive disease (OR=5.0, 95% CI 1.07-23.16, p=0.05), shorter overall survival taking into account the type of treatment (p=0.039), and increased risk of death due to MM at the level of tendency (OR=4.74, 95% CI 1.02-21.97, p=0.06). The presence of NOD2/CARD15 3020insC decreased the risk of renal dysfunction in MM (OR=0.23, 95% CI 0.07-0.74, p=0.009). The analyzed changes in NOD2/CARD15 and PSMA6 genes did not impact the MM risk. In an in vitro study, bortezomib increased the number of apoptotic cells at 8 nM and 12 nM between wild-type and 3030insC variants of NOD2/CARD15 (p=0.018 and p=0.03, respectively). Conclusion. The presented results suggest a possible impact of PSMA6 CG+GG genotypes on the MM outcome and the association of the NOD2/CARD15 variant with bortezomib in vitro sensitivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.