Introduction: The insertion (I allele) deletion (D allele) polymorphism of ACE gene (rs4646994) may influence the etiopathogenesis of multiple myeloma (MM). ACE gene is expressed in bone marrow cells and encodes angiotensin converting enzyme (ACE). It converts angiotensin I to active peptide angiotensin II, which stimulates proliferation of hematopoietic stem cells. This suggests possible association of ACE I/D gene polymorphism with MM. The aim of our study was to check possible impact of this polymorphism on risk of development and outcome of MM, as well as, sensitivity to bortezomib in cell cultures derived from MM patients.Objects and Methods: Genomic DNA from 98 newly diagnosed MM patients and 100 healthy blood donors were analyzed by PCR method. Chromosomal aberrations were detected by use of cIg-FISH. In a subgroup of 40 MM patients nucleated bone marrow cells were treated with bortezomib in vitro.Results: The Hardy-Weinberg equilibrium test showed that genotypic frequencies diverged significantly from the equilibrium. The differences between I and D allele frequencies in control and study population were significant (p = 0.046). We observed the association between DD genotype and more than 2-fold risk of MM - OR = 2.69; p < 0.0001. We did not detect any significant differences among studied genotypes regarding clinical and laboratory parameters. Moreover, we did not observe the association between survival of MM patients and I/D genotypes. Bortezomib increased number of apoptotic and necrotic cells, but the only statistically significant differences were observed in the number of viable cells at 1 nM between ID and DD genotypes (p = 0.026).Conclusion: Presented results confirmed the significant relationship between ACE (I/D) polymorphism and risk of MM development. We did not observe the association of ACE I/D polymorphism with disease outcome and bortezomib in vitro sensitivity.
Expression of microRNAs is altered in cancer. Circulating miRNA level assessed in body fluids commonly reflects their expression in tumor cells. In leukemias, however, both leukemic and nonleukemic cells compose circulating miRNA expression profile of peripheral blood. The latter contribution to extracellular miRNA pool may result in specific microenvironmental signaling, which promotes proliferation and survival. In our study, we used qT-PCR to assay peripheral blood serum of 22 chronic lymphocytic leukemia (CLL) patients for the expression of 84 miRNAs associated with activation and differentiation of B and T lymphocytes. Results were analyzed regarding the most important prognostic factors. We have found that the general expression of examined miRNAs in CLL patients was lower as compared to healthy volunteers. Only miR-34a-5p, miR31-5p, miR-155-5p, miR-150-5p, miR-15a-3p, and miR-29a-3p were expressed on a higher level. Alterations of expression observed in CLL patients involved miRNAs associated both with B and T lymphocyte differentiation and activation. The most important discriminating factors for all functional miRNA groups were trisomy 12, CD38 expression, B2M level, WBC, and NOTCH1 gene mutation. Correlation of expression of miRNAs related to T lymphocytes with prognostic factors proves their supportive function in a leukemic microenvironment. Further studies utilizing a larger test group of patients may warrant the identification of circulating miRNAs that are key players in intercellular interactions and should be considered in the design of microenvironment-targeted therapies.Electronic supplementary materialThe online version of this article (doi:10.1007/s00277-016-2840-6) contains supplementary material, which is available to authorized users.
Antioxidant compounds such as glutathione and its enzymes have become the focus of attention of medical sciences. Glutathione, a specific tripeptide, is involved in many intercellular processes. The glutathione concentration is determined by the number of GAG repeats in gamma-glutamylcysteine synthetase. GAG polymorphisms are associated with an increased risk of schizophrenia, berylliosis, diabetes, lung cancer, and nasopharyngeal tumors. Cancer cells with high glutathione concentration are resistant to chemotherapy treatment. The oxidized form of glutathione is formed by glutathione peroxidases (GPXs). The changes in activity of GPX1, GPX2, and GPX3 isoforms may be associated with the development of cancers, for example, prostate cancer or even colon cancer. Detoxification of glutathione conjugates is possible due to activity of glutathione S-transferases (GSTs). Polymorphisms in GSTM1, GSTP1, and GSTO1 enzymes increase the risk of developing breast cancer and hepatocellular carcinoma. Gamma-glutamyl transpeptidases (GGTs) are responsible for glutathione degradation. Increased activity of GGT correlates with adverse prognosis in patients with breast cancer. Studies on genes encoding glutathione enzymes are continued in order to determine the correlation between DNA polymorphisms in cancer patients.
MicroRNAs (miRNAs) regulate gene expression; many of them act in the retinal pigment epithelium (RPE), and RPE degeneration is known to be a critical factor in age‐related macular degeneration (AMD). Repeated injections with anti‐VEGFA (vascular endothelial growth factor A) are the only effective therapy in wet AMD. We investigated the correlation between the expression of 18 miRNAs involved in the regulation of the VEGFA gene in serum of 76 wet AMD patients and 70 controls. Efficacy of anti‐VEGFA treatment was evaluated by counting the number of injections delivered up to 12 years. In addition, we compared the relative numbers of deaths in patient with AMD and control groups. We observed a decreased expression of miR‐34‐5p, miR‐126‐3p, miR‐145‐5p and miR‐205‐5p in wet AMD patients as compared with controls. These miRNAs are involved in the regulation of angiogenesis, cytoprotection and protein clearance. No miRNA was significantly correlated with the treatment outcome. Wet AMD patients had greater mortality than controls, and their survival was inversely associated with the number of anti‐VEGFA injections per year. No association was observed between miRNA expression and mortality. Our study emphasizes the need to clarify the role of miRNA regulation in AMD pathogenesis.
Neutrophils to lymphocytes ratio (NLR) and platelets to lymphocytes ratio (PLR) are considered as laboratory markers of inflammation. They can be potentially useful in predicting the course of multiple neoplasms including selected hematological cancers. The aim of the study was to assess the value of NLR and PLR in predicting the effects of therapy and prognosis in multiple myeloma patients treated with thalidomide-based regimen. The study group consisted of 100 patients treated with the first line CTD (cyclophosphamide, thalidomide, and dexamethasone) chemotherapy. The NLR and PLR were calculated before treatment. High NLR was observed in patients with higher stage of the disease, with poor performance status, hypercalcemia, and high CRP. High PLR was associated with low BMI and high CRP. In patients with high NLR, significantly shorter PFS was observed (17 vs. 26 months, p = 0.0405). In addition, high values of NLR and PLR were associated with significantly shorter OS (38 vs. 79 months, p = 0.0010; 40 vs. 78 months, p = 0.0058). Summarizing, NLR and PLR have a significant independent prognostic value for multiple myeloma patients. Furthermore, the NLR can be a predictive marker for the outcome of thalidomide-based chemotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.