Surface-modified hemp stem-based activated carbons (HACs) were prepared and used for the adsorption of atrazine from aqueous solution, and their adsorption performance was examined. A series of HACs were prepared by potassium hydroxide activation of hemp stems, followed by subsequent modification by thermal annealing, oxidation with nitric acid and amination. The resultant HACs differed in surface chemistry, while possessing similar porous structure. The surface group characteristics were examined by X-ray photoelectron spectroscopy and measurement of the point of zero charge (pH PZC ). The adsorption of atrazine from aqueous solution was performed in static conditions. The Langmuir-Freundlich and Langmuir models gave a better fit for equilibrium isotherms compared with the Freundlich model. The atrazine adsorption process was controlled by an intraparticle diffusion mechanism with a significant contribution from film diffusion. The presence of oxygen and nitrogen functionalities on the carbon surface was found to be undesirable for atrazine adsorption. The superior adsorbent was obtained by heat treatment of HAC in an inert atmosphere at 700°C, resulting in a very high adsorption capacity due to its enhanced hydrophobicity. The adsorption of atrazine on the studied HACs mainly involves p-p dispersive interactions between the atrazine ring and the graphene layers of carbon.
Tyre wastes and their blends with coal and a bituminous waste material obtained from the benzol distillation column of a by-product section of a coking plant were employed as a precursor for the production of activated carbons (ACs). Pyrolysis up to 850 °C followed by physical activation with CO 2 produced mesoporous carbons with different pore size distributions and surface areas. The surface chemistry of the samples was studied by measuring the point of zero charge (pH pzc ) and by temperature programmed desorption (TPD). The activated carbons obtained contained higher amounts of basic functional groups. Their textural and surface chemistry characteristics make them highly suitable for adsorbing acid dyes of large molecular size, such as Congo red. The adsorption kinetics was found to conform closely to the pseudo-second-order kinetic model. To determine the adsorption mechanism, the kinetic data were also analysed using the Weber and Morris intraparticle diffusion model and the Boyd model to distinguish between the pore and film diffusion steps. The equilibrium isotherms were of the Langmuir isotherm type. The efficiency of the low-cost ACs prepared for the removal of Congo red dye was similar to that reported in the literature for coal-based ACs and greater than that of other low-cost ACs.
A series of activated carbons (ACs) were produced by chemical activation of hemp stem with phosphoric acid in nitrogen and steam atmospheres. The potential of hemp-derived waste for the manufacture of porous carbons with a wide spectrum of porosity, ranging from microporous to mesoporous, has been demonstrated. The influence of the variables, such as the H 3 PO 4 /hemp stem impregnation ratio, the soaking time and the gaseous atmosphere, on the porosity development was studied. Depending on the processing conditions, the H 3 PO 4 activation produces ACs with a wide range of textural parameters, reaching surface areas[2,500 m 2 /g, micropore pore volumes up to 0.89 cm 3 /g and mesopore volumes up to 1.80 cm 3 /g. The amount of H 3 PO 4 used in the impregnation step affects the porous texture of the resultant ACs to a greater extent than the soaking time. At low and medium impregnation ratios, a steam atmosphere favors the formation of mesopores during H 3 PO 4 activation.
The production of activated carbons (ACs) from rapeseed cake and raspberry seed cake using slow pyrolysis followed by physical activation of the obtained solid residues is the topic of this study. The effect of activation temperature (850, 900 and 950 °C), activation time (30, 60, 90 and 120 min) and agent (steam and CO2) on the textural characteristics of the ACs is investigated by N2 adsorption. In general, higher activation temperatures and longer activation times increase the BET specific surface area and the porosity of the ACs, regardless of the activation agent or raw material. Steam is more reactive than CO2 in terms of pore development, especially in the case of raspberry seed cake. The performance of the ACs in liquid adsorption is evaluated by batch phenol adsorption tests. Experimental data are best fitted by the Freundlich isotherm model. Based on total yield, textural characteristics and phenol adsorption, steam activation at 900 °C for 90 min and CO2 activation at 900 °C for 120 min are found as the best activation conditions. Raspberry seed cake turns out to be a better raw material than rapeseed cake. Moreover, AC from raspberry seed cake produced by steam activation at 900 °C for 90 min performs as well as commercial AC (Norit GAC 1240) in phenol adsorption. The adsorption kinetics of the selected ACs are best fitted by the pseudo-second-order model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.